Theoretical Foundations of Chemical Engineering

, Volume 53, Issue 1, pp 139–146 | Cite as

Bioethanol Production from Saccharomyces cerevisiae through Conventional and Membrane Batch Fermentation: Experimental and Modeling Studies

  • R. Khalseh
  • A. Ghoreyshi
  • M. RahimnejadEmail author
  • M. Esfahanian
  • H. Mehdipour
  • S. Khoshhal


Kinetics for bioethanol production from glucose using Saccharomyces cerevisiae (PTCC 24860) was experimentally studied in a batch membrane bioreactor and a conventional bioreactor using a pervaporation process. For pervaporation, a dense hydrophobic polydimethylsiloxane membrane was used. The batch membrane bioreactor resulted in increase of cell density, improved productivity and yield. A generic model was developed which can give a unique description for production of bioethanol within both batch membrane bioreactor and conventional bioreactor. Coupled describing equations of the model were solved by means of genetic algorithm approach. The logistic model considered for expression of growth kinetics and kinetic parameters calculated through the genetic algorithm. The results demonstrated that this generic model is capable to describe reasonably the behavior of both the conventional bioreactor and the batch membrane bioreactor with the highest correlation coefficient (0.979 and 0.987, respectively).


membrane bioreactor bioethanol production genetic algorithm growth kinetics 


  1. 1.
    Goldemberg, J., Ethanol for a sustainable energy future, Science, 2007, vol. 315, no. 5813, pp. 808–810. CrossRefGoogle Scholar
  2. 2.
    Izadi, P. and Rahimnejad, M., Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell, Biofuel Res. J., 2013, vol. 1, pp. 34–38. CrossRefGoogle Scholar
  3. 3.
    Jafary, T., Rahimnejad M., Ghoreyshi, A.A., Najafpour, G., Hghparast, F., and Daud, W.R.W., Assessment of bioelectricity production in microbial fuel cells through series and parallel connections, Energy Convers. Manage., 2013, vol. 75, pp. 256–262. CrossRefGoogle Scholar
  4. 4.
    Lennartsson, P.R., Erlandsson, P., and Taherzadeh, M.J., Integration of the first and second generation bioethanol processes and the importance of by-products, Bioresour. Technol., 2014, vol. 165, pp. 3–8.CrossRefGoogle Scholar
  5. 5.
    Macedo, I.C., Seabra, J.E.A., and Silva, J.E.A., Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020, Biomass Bioenergy, 2008, vol. 32, pp. 582–595.CrossRefGoogle Scholar
  6. 6.
    Mairal, A.P., Ng, A., Baker, R.W., et al., US Patent 7732173B2, 2010.Google Scholar
  7. 7.
    Ding, W.W., Wu, Y.T., Tang, X.Y., Yuan, L., and Xiao, Z.-Y., Continuous ethanol fermentation in closed-circulating system using an immobilized cell coupled with PDMS membrane pervaporation, J. Chem. Technol. Biotechnol., 2011, vol. 86, pp. 82–87. CrossRefGoogle Scholar
  8. 8.
    Zhang, L., Zhao, H., Gan, M., Jin, Y., Gao, X., Chen, Q., Guan, J., and Wang, Z., Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales, Bioresour. Technol., 2011, vol. 102, pp. 4573–4579. CrossRefGoogle Scholar
  9. 9.
    Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., and Patil, S., Bioethanol production: Feedstock and current technologies, J. Environ. Chem. Eng., 2014, vol. 2, no. 1, pp. 573–584. CrossRefGoogle Scholar
  10. 10.
    He, Y., Bagley, D.M., Leung, K.T., Liss, S.N., and Liao, B.-Q., Recent advances in membrane technologies for biorefining and bioenergy production, Biotechnol. Adv., 2012, vol. 30, pp. 817–858. CrossRefGoogle Scholar
  11. 11.
    Lewandowicz, G., Białas, W., Marczewski, B., and Szymanowska, D., Application of membrane distillation for ethanol recovery during fuel ethanol production, J. Membr. Sci., 2011, vol. 375, pp. 212–219. CrossRefGoogle Scholar
  12. 12.
    Rahimnejad, M., Najafpour, G., and Bakeri, G., Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier, Colloids Surf., A, 2012, vol. 412, pp. 96–100.CrossRefGoogle Scholar
  13. 13.
    Tardast, A., Rahimnejad, M., Najafpour, G., Ghoreyshi, A., Premier, G.C., Bakeri, G., and Oh, S.-E., Use of artificial neural network for the prediction of bioelectricity production in a membrane less microbial fuel cell, Fuel, 2014, vol. 117, pp. 697–703. CrossRefGoogle Scholar
  14. 14.
    Ahmad, F., Jameel, A.T., Kamarudin, M.H., and Mel, M., Study of growth kinetic and modeling of ethanol production by Saccharomyces cerevisae, Afr. J. Biotechnol., 2011, vol. 16, pp. 18842–18846. Google Scholar
  15. 15.
    Jin, H., Liu, R., and He, Y., Kinetics of batch fermentations for ethanol production with immobilized Saccharomyces cerevisiae growing on sweet sorghum stalk juice, Procedia Environ. Sci., 2012, vol. 12, pp. 137–145. CrossRefGoogle Scholar
  16. 16.
    Katare, S., Bhan, A., Caruthers, J.M., Delgass, W.N., and Venkatasubramanian, V., A hybrid genetic algorithm for efficient parameter estimation of large kinetic models, Comput. Chem. Eng., 2004, vol. 28, pp. 2569–2581. CrossRefGoogle Scholar
  17. 17.
    Nguyen, V.D., Auresenia, J., Kosuge, H., Tan, R.R., and Brondial, Y., Vacuum fermentation integrated with separation process for ethanol production, Biochem. Eng. J., 2011, vol. 55, pp. 208–214. CrossRefGoogle Scholar
  18. 18.
    Ozmihci, S. and Kargi, F., Ethanol fermentation of cheese whey powder solution by repeated fed-batch operation, Enzyme Microb. Technol., 2007, vol. 41, pp. 169–174.CrossRefGoogle Scholar
  19. 19.
    Ajbar, A. and Alhumaizi, K., Biodegradation of substitutable substrates in continuous bioreactor with cell recycle: A study of static bifurcation, Math. Comput. Modell., 2000, vol. 31, pp. 159–174. CrossRefGoogle Scholar
  20. 20.
    Chen, C., Tang, X., Xiao, Z., Zhou, Y., Jiang, Y., and Fu, S., Ethanol fermentation kinetics in a continuous and closed-circulating fermentation system with a pervaporation membrane bioreactor, Bioresour. Technol., 2012, vol. 114, pp. 707–710. CrossRefGoogle Scholar
  21. 21.
    Dodić, J.M., Vučurović, D.G., Dodić, S.N., Grahovac, J.A., Popov, S.D., and Nedeljković, N.M., Kinetic modelling of batch ethanol production from sugar beet raw juice, Appl. Energy, 2012, vol. 99, pp. 192–197. CrossRefGoogle Scholar
  22. 22.
    Esfahanian, M., Ghorbanfarahi, A.H., Ghoreyshi, A.A., and Najafpour, G., Enhanced bioethanol production in batch fermentation by pervaporation using a PDMS membrane bioreactor, Int. J. Eng. Trans. B: Appl., 2012, vol. 25, pp. 249–258.Google Scholar
  23. 23.
    Fujikawa, H., Kai A., and Morozumi, S., A new logistic model for Escherichia coligrowth at constant and dynamic temperatures, J. Food Microbiol., 2004, vol. 21, pp. 501–509.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. Khalseh
    • 1
  • A. Ghoreyshi
    • 1
  • M. Rahimnejad
    • 2
    Email author
  • M. Esfahanian
    • 3
  • H. Mehdipour
    • 1
  • S. Khoshhal
    • 1
  1. 1.Chemical Engineering Department, Babol Noshirvani University of TechnologyBabolIran
  2. 2.Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of TechnologyBabolIran
  3. 3.Chemical Engineering Department, Islamic Azad UniversityQaemshahrIran

Personalised recommendations