Theoretical Foundations of Chemical Engineering

, Volume 52, Issue 6, pp 943–955 | Cite as

Method for the Synthesis of Optimum Multistage Heat Exchange Network

  • N. N. ZiyatdinovEmail author
  • I. I. Emel’yanov
  • Le Quang Tuen


A new algorithmic approach to the synthesis of economically optimum multistage heat exchange network in the design and reconstruction of chemical-technological units has been considered. The problem was proposed to be solved based on the assignment problem and decomposition principle of fixation of variables. The efficiency of the approach was shown on the example of solving a number of typical problems on heat integration.


process system optimum design synthesis of optimum heat exchange network thermal integration assignment problem superstructure decomposition approach variable fixation principle elementary unit of a heat exchange network 



  1. 1.
    Klemeš, J.J. and Kravanja, Z., Forty years of heat integration: Pinch analysis (PA) and mathematical programming (MP), Curr. Opin. Chem. Eng., 2013, vol. 2, no. 4, pp. 461–474. j.coche.2013.10.003CrossRefGoogle Scholar
  2. 2.
    Smit, R., Klemeš, J., Tovazhnyanskii, L.L., Kapustenko, P.A., and Ul’ev, L.M., Osnovy integratsii teplovykh protsessov (Fundamentals of Heat Integration Processes), Kharkiv: Nats. Tekh. Univ. KhPI, 2000.Google Scholar
  3. 3.
    Meshalkin, V.P., Tovazhnyanskii, L.L., and Kapustenko, P.A., Osnovy teorii resursosberegayushchikh integrirovannykh khimiko-tekhnologicheskikh sistem (Fundamentals of the Theory of Resource-Saving Integrated Chemical Process Systems), Kharkiv: Nats. Tekh. Univ. KhPI, 2006.Google Scholar
  4. 4.
    Tsirlin, A.M., Akhremenkov, A.A., and Grigorevskii, I.N., Minimal irreversibility and optimal distributions of heat transfer surface area and heat load in heat transfer systems, Theor. Found. Chem. Eng., 2008, vol. 42, no. 2, pp. 203–210. Scholar
  5. 5.
    Linnhoff, B., Pinch analysis—A state-of-the-art overview: Techno-economic analysis, Chem. Eng. Res. Des., 1993, vol. 71, no. 5, pp. 503–522.Google Scholar
  6. 6.
    Zamora, J.M. and Grossmann, I.E., A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits, Comput. Chem. Eng., 1998, vol. 22, no. 3, pp. 367–384. Scholar
  7. 7.
    Furman, K.C. and Sahinidis, N.V., Computational complexity of heat exchanger network synthesis, Comput. Chem. Eng., 2001, vol. 25, nos. 9–10, pp. 1371–1390. Scholar
  8. 8.
    Ostrovsky, G.M., Ziyatdinov, N.N., and Lapteva, T.V., Optimizatsiya tekhnicheskikh sistem (Optimization of Engineering Systems), Moscow: KNORUS, 2012.Google Scholar
  9. 9.
    Yee, T.F. and Grossmann, I.E., Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis, Comput. Chem. Eng., 1990, vol. 14, no. 10, pp. 1165–1184. Scholar
  10. 10.
    Lee, K.F., Masso, A.H., and Rudd, D.F., Branch and bound synthesis of integrated process designs, Ind. Eng. Chem. Fundam., 1970, vol. 9, no. 1, pp. 48–58. Scholar
  11. 11.
    Papoulias, S.A. and Grossmann, I.E., A structural optimization approach in process synthesis—II: Heat recovery networks, Comput. Chem. Eng., 1983, vol. 7, no. 6, pp. 707–721. Scholar
  12. 12.
    Chen, Y., Grossmann, I.E., and Miller, D.C., Computational strategies for large-scale MILP transshipment models for heat exchanger network synthesis, Comput. Chem. Eng., 2015, vol. 82, pp. 68–83. Scholar
  13. 13.
    Biegler, L.T., Grossmann, I.E., and Westerberg, A.W., Systematic Methods of Chemical Process Design, Upper Saddle River, N.J.: Prentice Hall, 1997.Google Scholar
  14. 14.
    Athier, G., Floquet, P., Pibouleau, L., and Domenech, S., Synthesis of heat-exchanger network by simulated annealing and NLP procedures, AIChE J., 1997, vol. 43, no. 11, pp. 3007–3020. 10.1002/aic.690431113CrossRefGoogle Scholar
  15. 15.
    Ghiasvand, A., Fazlali, A.R., Ghiasi, T.S., Shoorehdeli, M.A., and Mohammadi, A.H., Optimization of Heat Exchanger Networks Using an Evolutionary Method, Advances in Energy Research, vol. 18, New York: Nova Science, 2014.Google Scholar
  16. 16.
    Ravagnani, M.A.S.S., Silva, A.P., Arroyo, P.A., and Constantino, A.A., Heat exchanger network synthesis and optimisation using genetic algorithm, Appl. Therm. Eng., 2005, vol. 25, no. 7, pp. 1003–1017. Scholar
  17. 17.
    Ostrovsky, G.M. and Berezhinskii, T.A., Optimizatsiya khimiko-tekhnologicheskikh protsessov. Teoriya i praktika (Optimization of Chemical Engineering Processes: Theory and Practice), Moscow: Khimiya, 1984.Google Scholar
  18. 18.
    Ostrovskii, G.M., Ziyatdinov, N.N., and Emel’yanov, I.I., Synthesis of optimal systems of simple distillation columns with heat recovery, Dokl. Chem., 2015, vol. 461, no. 1, pp. 89–92. S0012500815030052CrossRefGoogle Scholar
  19. 19.
    Ziyatdinov, N.N., Ostrovskii, G.M., and Emel’yanov, I.I., Designing a heat-exchange network upon the reconstruction and synthesis of optimal systems of distillation columns, Theor. Found. Chem. Eng., 2016, vol. 50, no. 2, pp. 178–187. S0040579516020147CrossRefGoogle Scholar
  20. 20.
    Ostrovsky, G.M. and Volin, Yu.M., Modelirovanie slozhnykh khimiko-tekhnologicheskikh skhem (Modeling of Complex Chemical Process Flow Diagrams), Moscow: Khimiya, 1975.Google Scholar
  21. 21.
    Yee, T.F., Grossmann, I.E., and Kravanja, Z., Simultaneous optimization models for heat integration—III. Process and heat exchanger network optimization, Comput. Chem. Eng., 1990, vol. 14, no. 11, pp. 1185–1200. Scholar
  22. 22.
    Ponce-Ortega, J.M., Jiménez-Gutiérrez, A., and Grossmann, I.E., Optimal synthesis of heat exchanger networks involving isothermal process streams, Comput. Chem. Eng., 2008, vol. 32, no. 8, pp. 1918–1942. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Ziyatdinov
    • 1
    Email author
  • I. I. Emel’yanov
    • 1
  • Le Quang Tuen
    • 1
  1. 1.Kazan National Research Technological UniversityKazanRussia

Personalised recommendations