Advertisement

Theoretical Foundations of Chemical Engineering

, Volume 52, Issue 6, pp 987–995 | Cite as

Hydrodynamics and Heat Transfer during Boiling in a Rotating Gas–Liquid Layer

  • N. A. VoinovEmail author
  • O. P. Zhukova
  • N. M. Konovalov
Article
  • 10 Downloads

Abstract

Research results regarding hydrodynamics and heat transfer during boiling in a rotating gas–liquid layer are presented. The dependencies for defining the gas content, angular velocity, and height of the liquid layer retained on the heat transfer surface at the expense of the force of inertia of the rotating gas flow are obtained. It is shown that the heat transfer coefficient increases with growth of the angular velocity of the layer and the decrement of its average temperature. The increment of the heat transfer coefficient during boiling in comparison to boiling in the chamber volume was achieved up to three times. Construction of the vortex evaporator (condenser) was elaborated, and the heat transfer coefficient in it constituted 15 000–30 000 W/(m2 K).

Keywords:

heat transfer boiling hydrodynamics angular velocity vortex generator 

Notes

REFERENCES

  1. 1.
    Pranoto, I., Leong, K.C., and Jin, L.W., The role of graphite foam pore structure on saturated pool boiling enhancement, Appl. Therm. Eng., 2012, vol. 42, pp. 163–172. https://doi.org/10.1016/j.applthermaleng.2012.03.001CrossRefGoogle Scholar
  2. 2.
    Saeidi, D. and Alemrajabi, A.A., Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces, Int. J. Heat Mass Transfer, 2013, vol. 60, pp. 440–449. https://doi.org/10.1016/ j.ijheatmasstransfer.2013.01.016CrossRefGoogle Scholar
  3. 3.
    Sakashita, H., CHF and near-wall boiling behaviors in pool boiling of water on a heating surface coated with nanoparticles, Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 23–24, pp. 7312–7320. https://doi.org/10.1016/ j.ijheatmasstransfer.2012.07.061CrossRefGoogle Scholar
  4. 4.
    Voinov, N.A., Putintseva, N.A., and Vyrina, E.E., Heat transfer in an air vortex condenser, Khim. Prom-st., 2013, vol. 90, no. 6, p. 291.Google Scholar
  5. 5.
    Voinov, N.A., Lednik, S.A., and Zhukova, O.P., Vortical contact stage for heat- and mass-exchange processes, Chem. Pet. Eng., 2014, vol. 49, nos. 9–10, pp. 579–583. https://doi.org/10.1007/s10556-014-9798-9Google Scholar
  6. 6.
    Voinov, N.A., Lednik, S.A., and Zhukova, O.P., Heat and mass transfer on a vortical contact stage, Khim. Rastit. Syr’ya, 2012, no. 4, p. 209.Google Scholar
  7. 7.
    Voinov, N.A., Lednik, S.A., Zhukova, O.P., Voronin, S.M., and Voinov, A.N., RF Patent 2466767, 2011.Google Scholar
  8. 8.
    Voinov, N.A., Zhukova, O.P., and Nikolaev, N.A., Hydrodynamics of the vortex stage with tangential swirlers, Theor. Found. Chem. Eng., 2010, vol. 44, no. 2, pp. 213–219. https://doi.org/10.1134/S0040579510020132CrossRefGoogle Scholar
  9. 9.
    Voinov, N.A. and Lednik, S.A., Hydrodynamics and mass transfer on a stage with profiled tangential channels, Khim. Prom-st., 2011, vol. 88, no. 5, p. 250.Google Scholar
  10. 10.
    Voinov, N.A., Zhukova, O.P., Lednik, S.A., and Nikolaev, N.A., Mass transfer in gas-liquid layer on vortex contact stages, Theor. Found. Chem. Eng., 2013, vol. 47, no. 1, pp. 55–59. https://doi.org/10.1134/ S0040579513010132CrossRefGoogle Scholar
  11. 11.
    Arnol’d, L.V., Mikhailovskii, G.M., and Seliverstov, V.M., Tekhnicheskaya termodinamika i teploperedacha. Uchebnik dlya vuzov (Engineering Thermodynamics and Heat Transfer: A Textbook for Institutions of Higher Education), Moscow: Vysshaya Shkola, 1979, 2nd ed.Google Scholar
  12. 12.
    Ainshtein, V.G., Zakharov, M.K., Nosov, G.A., Zakharenko, V.V., Zinovkina, T.V., Taran, A.L., and Kostanyan, A.E., Obshchii kurs protsessov i apparatov khimicheskoi tekhnologii: uchebnik dlya VUZov v dvukh knigakh. Kniga 1 (A General Course in Chemical Engineering Processes and Equipment: A Textbook for Institutions of Higher Education in Two Volumes), Moscow: Logos, 2006, vol. 1.Google Scholar
  13. 13.
    Smogalev, I.P., Calculation of critical heat fluxes in the flow of underheated water at low velocities, Teploenergetika, 1981, no. 4, p. 14.Google Scholar
  14. 14.
    Fedorov, L.F. and Rossokhin, N.G., Protsessy generatsii para na atomnykh elektrostantsiyakh (Processes for Steam Generation at Nuclear Power Plants), Moscow: Energoizdat, 1985.Google Scholar
  15. 15.
    Sarafraz, M.M. and Peyghambarzadeh, S.M., Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus, Exp. Therm. Fluid Sci., 2013, vol. 50, pp. 154–162. https://doi.org/10.1016/j.expthermflusci.2013.06.003CrossRefGoogle Scholar
  16. 16.
    Voinov, N.A., Zhukova, O.P., and Nikolaev, A.N., Heat transfer in condensation and boiling in a tubular film evaporator, Theor. Found. Chem. Eng., 2012, vol. 46, no. 4, pp. 359–367. https://doi.org/10.1134/ S0040579512030104CrossRefGoogle Scholar
  17. 17.
    Gandzyuk, Yu.M., Grigorenko, I.P., and Zubrii, O.G., An equation for calculating the average thickness of a liquid film flowing down the outer surface of long tubes, Khim. Mashinostr., 1982, vol. 36, p. 49.Google Scholar
  18. 18.
    Slesarenko, V.N., Distillyatsionnye opresnitel’nye ustanovki (Desalinating Distillation Plants), Moscow: Energiya, 1980.Google Scholar
  19. 19.
    Voinov, N.A. and Nikolaev, A.N., Teplos"em pri plenochnom techenii (Heat Removal in Film Flows), Kazan: Otechestvo, 2011.Google Scholar
  20. 20.
    Voinov, N.A., Zhukova, O.P., Lednik, S.A., and Zemtsov, D.A., RF Patent 2580727, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Voinov
    • 1
    Email author
  • O. P. Zhukova
    • 1
  • N. M. Konovalov
    • 2
  1. 1.Reshetnev Siberian State Aerospace UniversityKrasnoyarskRussia
  2. 2.Krasnoyarsk Branch of JSC Transsibneft-Zapadnaya Sibir’KrasnoyarskRussia

Personalised recommendations