Theoretical Foundations of Chemical Engineering

, Volume 52, Issue 6, pp 935–942 | Cite as

Synthesis of Methanol from Oil- and Gas-Field Flare Gases at the Same Pressure of the Syngas Generation and Methanol Synthesis Steps

  • V. A. Masgutova
  • D. I. PotemkinEmail author
  • A. V. Kurochkin
  • P. V. Snytnikov
  • Yu. I. Amosov
  • V. A. Kirillov
  • V. A. Sobyanin


A combination of the syngas generation and methanol synthesis steps by pressure is considered to obtain methanol from oil- and gas-fields flare gases. The combined process is thermodynamically analyzed within 700–1100°C and 2–10 MPa for flare gas conversion into syngas. The features of the synthesis of syngas by steam, steam–oxygen, and steam–air conversion are considered. The combined steam conversion of flare gas at 900–950°C and the synthesis of methanol at 230°C together with a total pressure of 3.5–5 MPa make it possible to produce methanol with a yield of up to 1.1 tmethanol/traw and may be recommended for the qualified processing of flare gas into methanol directly on the fields. The synthesis of methanol from syngas with a high amount of CO2 is experimentally verified on copper–zinc catalysts at 230–270°C and 5–8 MPa.


methanol synthesis of methanol syngas natural gas flare gas steam conversion 



  1. 1.
    Chernyshev, A.K., Daut, V.A., Surba, A.K., Sirotin, A.V., Kunitskii, V.Ya., Makhlai, V.N., Tararyshkin, M.V., and Chernyshev, K.A., Metanol: svoistva, proizvodstvo, primenenie (Methanol: Properties, Production, and Applications), Moscow: Infokhim, 2011, vols. 1–2.Google Scholar
  2. 2.
    Rozovskii, A.Ya. and Lin, G.I., Teoreticheskie osnovy protsessa sinteza metanola (Theoretical Fundamentals of Methanol Synthesis), Moscow: Khimiya, 1990.Google Scholar
  3. 3.
    Pisarenko, E.V., Pisarenko, V.N., Minigulov, R.M., and Abaskuliev, D.A., Power- and resource-saving process for producing methanol from natural gas, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 12–18. Scholar
  4. 4.
    Timoshin, E.S., Morozov, L.N., Alekperov, O.Yu., Burov, A.V., and Isachenkov, A.A., Energy and resource efficiency of steam-oxygen natural gas reformation in the production of methanol, Theor. Found. Chem. Eng., 2016, vol. 50, no. 4, pp. 638–641. Scholar
  5. 5.
    Naletov, V.A., Kolesnikov, V.A., Glebov, M.B., Naletov, A.Yu., and Glebov, V.B., Technology for processing natural energy resources based on the concept of optimal chemical engineering system organization, Theor. Found. Chem. Eng., 2017, vol. 51, no. 2, pp. 142–150. Scholar
  6. 6.
    Kuznetsov, V.V., Vitovskii, O.V., and Gasenko, O.A., Steam reforming of biogas over a Rh/Al2O3 catalyst in an annular microreactor, Theor. Found. Chem. Eng., 2014, vol. 48, no. 4, pp. 376–381. 10.1134/S0040579514040216CrossRefGoogle Scholar
  7. 7.
    Martsinkovskii, V.S., Problems of the operation of synthesis gas compressors in ammonia production and their elimination, Kompressornoe Energ. Mashinostr., 2012, no. 4 (30), pp. 13–18.Google Scholar
  8. 8.
    Ladygin, K.V., Zolotarskii, I.A., Tsukerman, M.Ya., and Stompel’, S., RF Patent 2569296, 2014.Google Scholar
  9. 9.
    Van Dijk, C.P. and Fraley, L.D., US Patent 5177114, 1990.Google Scholar
  10. 10.
    Astanovskii, D.L., Astanovskii, L.Z., and Verteletskii, P.V., Energy-saving methanol production, Katal. Prom-sti., 2007, no. 1, p. 22.Google Scholar
  11. 11.
    Pisarenko, E.V. and Pisarenko, V.N., Power- and resource-saving process for producing syngas from natural gas in methanol production, Theor. Found. Chem. Eng., 2011, vol. 45, no. 4, pp. 349–354. 10.1134/S0040579511030109CrossRefGoogle Scholar
  12. 12.
    Spath, P.L. and Dayton, D.C., Preliminary screening — Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, National Renewable Energy Laboratory (NREL). fy04osti/34929.pdf. Accessed April 4, 2018.Google Scholar
  13. 13.
    Cañete, B., Gigola, C.E., and Brignole, N.B., Synthesis gas processes for methanol production via CH4 reforming with CO2, H2O, and O2, Ind. Eng. Chem. Res., 2014, vol. 53, no. 17, pp. 7103–7112. https:// Scholar
  14. 14.
    Pisarenko, E.V., Pisarenko, V.N., and Sarkisov, P.D., Intensification of natural gas conversion to the key products of petrochemical synthesis and engine fuels, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 617–628. Scholar
  15. 15.
    Dolinskii, S.E., Russian methanol units downsized and integrated for maximum results, Gazokhimiya, 2009, no. 4, pp. 14–18.Google Scholar
  16. 16.
    Yunusov, R.R., Shevkunov, S.N., Dedovets, S.A., Ushakov, S.N., Lyats, K.G., and Samoilov, A.P., Small-tonnage plants for methanol production in gas-producing regions of the Far North, Gazokhimiya, 2008, no. 1, pp. 58–61.Google Scholar
  17. 17.
    Rostrup-Nielsen, J.R., Christensen, T.S., and Dybkjaer, I., Steam reforming of liquid hydrocarbons, Stud. Surf. Sci. Catal., 1998, vol. 113, pp. 81–95. Scholar
  18. 18.
    Cross, J., Jones, G., and Kent, M.A., An introduction to pre-reforming catalysis, Nitrogen + Syngas, 2016, no. 341, pp. 40–48.Google Scholar
  19. 19.
    Christensen, T.S., Adiabatic prereforming of hydrocarbons — An important step in syngas production, Appl. Catal., A, 1996, vol. 138, no. 2, pp. 285–309. Scholar
  20. 20.
    Aasberg-Petersen, K., Hansen, J.H.B., Christensen, T.S., Dybkjaer, I., Christensen, P.S., Nielsen, C.S., Madsen, S.E.L.W., and Rostrup-Nielsen, J.R., Technologies for large-scale gas conversion, Appl. Catal., A, 2001, vol. 221, nos. 1–2, pp. 379–387. https:// Scholar
  21. 21.
    Kang, I., Bae, J., and Bae, G., Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications, J. Power Sources, 2006, vol. 163, no. 1, pp. 538–546. Scholar
  22. 22.
    Kemalov, R.A. and Kemalov, A.F., Tekhnologii polucheniya i primeneniya metanola: uchebnoe posobie (Methanol Production and Applications: A Textbook), Kazan: Kazan. Fed. Univ., 2016.Google Scholar
  23. 23.
    Liu, X.-M., Lu, G.Q., Yan, Z.-F., and Beltramini, J., Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2, Ind. Eng. Chem. Res., 2003, vol. 42, no. 25, pp. 6518–6530. https:// Scholar
  24. 24.
    Kirillov, V.A., Shigarov, A.B., Amosov, Yu.I., Belyaev, V.D., and Urusov, A.R., Diesel fuel pre-reforming into methane-hydrogen mixtures, Theor. Found. Chem. Eng., 2015, vol. 49, no. 1, pp. 30–40. 10.1134/S0040579515010030CrossRefGoogle Scholar
  25. 25.
    Zyryanova, M.M., Snytnikov, P.V., Amosov, Y.I., Belyaev, V.D., Kireenkov, V.V., Kuzin, N.A., Vernikovskaya, M.V., Kirillov, V.A., and Sobyanin, V.A., Upgrading of associated petroleum gas into methane-rich gas for power plant feeding applications. Technological and economic benefits, Fuel, 2013, vol. 108, pp. 282–291. Scholar
  26. 26.
    Uskov, S.I., Enikeeva, L.V., Potemkin, D.I., Belyaev, V.D., Snytnikov, P.V., Gubaidullin, I.M., Kirillov, V.A., and Sobyanin, V.A., Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst, Catal. Ind., 2017, vol. 9, no. 2, pp. 104–109. Scholar
  27. 27.
    Kirillov, V.A., Amosov, Yu.I., Shigarov, A.B., Kuzin, N.A., Kireenkov, V.V., Parmon, V.N., Aristovich, Yu.V., Gritsay, M.A., and Svetov, A.A., Experimental and theoretical study of associated petroleum gas processing into normalized gas by soft steam reforming, Theor. Found. Chem. Eng., 2017, vol. 51, no. 1, pp. 12–26. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Masgutova
    • 1
  • D. I. Potemkin
    • 2
    • 3
    Email author
  • A. V. Kurochkin
    • 4
  • P. V. Snytnikov
    • 2
    • 3
  • Yu. I. Amosov
    • 2
  • V. A. Kirillov
    • 2
  • V. A. Sobyanin
    • 2
  1. 1.Ufa State Petroleum Technological UniversityUfaBashkortostanRussia
  2. 2.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Integrated Technologies Association of Oil and Gas Engineers–TechnologistsUfaBashkortostanRussia

Personalised recommendations