Advertisement

Theoretical Foundations of Chemical Engineering

, Volume 52, Issue 6, pp 975–986 | Cite as

Role of Macro- and Microdistribution in the Formation of Metal and Alloy Layers in the Production of Printed Circuits and Other Components of Electronic Devices

  • S. S. KruglikovEmail author
  • V. A. Kolesnikov
  • N. E. Nekrasova
  • A. F. Gubin
Article
  • 19 Downloads

Abstract

The role of the macro- and microdistribution factors in the electrodeposition of metals and alloys on the components of electronic devices has been studied. There are three types of deviation of the deposition rate distribution from uniform distribution caused by differences: (1) in the surface area of ​​the cathode and dielectric sections, (2) in the deposition rate in the individual sections of one group, and (3) between the local deposition rates at different points of the surface of the individual cathode section. Methods for evaluating the microthrowing and leveling ability and predicting the microdistribution from the leveling ability data and the use of the Wagner number for evaluating the role of the macrodistribution factors were considered. Examples were given to illustrate the types of deposition rate distribution from electrolytes with positive, zero, and negative leveling ability.

Keywords:

electrodeposition microthrowing power leveling ability production of electronics printed circuits 

Notes

REFERENCES

  1. 1.
    Landolt, D., Electrodeposition science and technology in the last quarter of the twentieth century, J. Electrochem. Soc., 2002, vol. 149, no. 3, pp. S9–S20. https://doi.org/10.1149/1.1469028CrossRefGoogle Scholar
  2. 2.
    Schultze, J.W. and Bressel, A., Principles of electrochemical micro- and nano-system technologies, Electrochim. Acta, 2001, vol. 47, nos. 1–2, pp. 3–21. https://doi.org/10.1016/S0013-4686(01)00584-9CrossRefGoogle Scholar
  3. 3.
    Honma, H., Plating technology for electronics packaging, Electrochim. Acta, 2001, vol. 47, nos. 1–2, pp. 75–84. https://doi.org/10.1016/S0013-4686(01)00591-6CrossRefGoogle Scholar
  4. 4.
    Datta, M. and Landolt, D., Fundamental aspects and applications of electrochemical microfabrication, Electrochim. Acta, 2000, vol. 45, nos. 15–16, pp. 2535–2558. https://doi.org/10.1016/S0013-4686(00)00350-9CrossRefGoogle Scholar
  5. 5.
    Kobayashi, T., Kawasaki, J., Mihara, K., and Honma, H., Via-filling using electroplating for build-up PCBs, Electrochim. Acta, 2001, vol. 47, nos. 1–2, pp. 85–89. https://doi.org/10.1016/S0013-4686(01)00592-8CrossRefGoogle Scholar
  6. 6.
    Davydov, A.D. and Volgin, V.M., Template electrodeposition of metals. Review, Russ. J. Electrochem., 2016, vol. 52, no. 9, pp. 806–831. https://doi.org/ 10.1134/S1023193516090020CrossRefGoogle Scholar
  7. 7.
    De Vogelaere, M., Sommer, V., Springborn, H., and Michelsen-Mohammadein, U., High-speed plating for electronic applications, Electrochim. Acta, 2001, vol. 47, nos. 1–2, pp. 109–116. https://doi.org/10.1016/S0013-4686(01)00555-2CrossRefGoogle Scholar
  8. 8.
    Gamburg, Yu.D. and Zungary, G., Theory and Practice of Metal Electrodeposition, New York: Springer, 2011.CrossRefGoogle Scholar
  9. 9.
    Gamburg, Yu.D., Development of the electrocrystallization theory, Russ. J. Electrochem., 2016, vol. 52, no. 9, pp. 832–846. https://doi.org/10.1134/ S1023193516090032CrossRefGoogle Scholar
  10. 10.
    Kruglikov, S.S., Surface leveling in the electrodeposition of metals, Electrochemistry 1965, Kruglikov, S.S., Ed., Moscow: VINITI, 1967, p. 95.Google Scholar
  11. 11.
    Kruglikov, S.S. and Kovarskii, N.Ya., Microroughness reduction in the electrodeposition of metals, Itogi Nauki Tekh., Ser.: Elektrokhim., Moscow: VINITI, 1975, vol. 10, pp. 106–188.Google Scholar
  12. 12.
    Razali, A.R. and Qin, Y., A review on micro-manufacturing, micro-forming and their key issues, Procedia Eng., 2013, vol. 53, pp. 665–672. https://doi.org/ 10.1016/j.proeng.2013.02.086CrossRefGoogle Scholar
  13. 13.
    Fu, M.W. and Chan, W.L., A review on the state-of-the-art microforming technologies, Int. J. Adv. Manuf. Technol., 2013, vol. 67, nos. 9–12, pp. 2411–2437. https://doi.org/10.1007/s00170-012-4661-7CrossRefGoogle Scholar
  14. 14.
    Korotkov, V.V., Kudryavtsev, V.N., Zagorskii, D.L., Kruglikov, S.S., Sul’yanov, S.L., and Bedin, S.A., Electrodeposition of metals of iron group into the pores of track membranes for the preparation of nanowires, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 1, pp. 24–33.Google Scholar
  15. 15.
    Kruglikov, S.S., Certain features of the electrodeposition of metals and alloys under potentiostatic conditions, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 1, pp. 40–47.Google Scholar
  16. 16.
    Kruglikov, S.S., Macro- and microdistribution of the deposition rate in the plating of the components of electronic devices, Gal’vanotekh. Obrab. Poverkhn., 2017, vol. 25, no. 1, pp. 41–54.Google Scholar
  17. 17.
    Peeters, P., Hoorn, G.v.d., Daenen, T., Kurovski, A., and Staikov, G., Properties of electroless and electroplated Ni–P and its application in microgalvanics, Electrochim. Acta, 2001, vol. 47, nos. 1–2, pp. 161–169. https://doi.org/10.1016/S0013-4686(01)00546-1CrossRefGoogle Scholar
  18. 18.
    Kruglikov, S.S., Kudryavtsev, N.T., Vorob’eva, G.F., and L’vovskii, V.M., Study of the effect of pulsating current on surface smoothing in nickel plating, Dokl. Akad. Nauk SSSR, 1961, vol. 140, p. 877.Google Scholar
  19. 19.
    Kruglikov, S.S. and Smirnova, T.A., Leveling power: Definition and methods of evaluation, Proc. 8th Congress of the International Union for Electrodeposition and Surface Finishing “Interfinish-72”, Zurich: Forster, 1973, p. 105.Google Scholar
  20. 20.
    Cao, Y., Taephaisitphongse, P., Chalupa, R., and West, A.C., Three-additive model of superfilling of copper, J. Electrochem. Soc., 2001, vol. 148, no. 7, pp. C466–C472. https://doi.org/10.1149/1.1377898CrossRefGoogle Scholar
  21. 21.
    Georgiadou, M., Veyret, D., Sani, R.L., and Alkire, R.C., Simulation of shape evolution during electrodeposition of copper in the presence of additive, J. Electrochem. Soc., 2001, vol. 148, no. 1, pp. C54–C58. https://doi.org/10.1149/1.1344540CrossRefGoogle Scholar
  22. 22.
    West, A.C., Mayer, S., and Reid, J., A superfilling model that predicts bump formation, Electrochem. Solid-State Lett., 2001, vol. 4, no. 7, pp. C50–C53. https://doi.org/10.1149/1.1375856CrossRefGoogle Scholar
  23. 23.
    Josell, D., Wheeler, D., Huber, W.H., Bonevich, J.E., and Mofatt, T.P., A simple equation for predicting superconformal electrodeposition in submicrometer trenches, J. Electrochem. Soc., 2001, vol. 148, no. 12, pp. C767–C773. https://doi.org/10.1149/1.1414287CrossRefGoogle Scholar
  24. 24.
    Akolkar, R. and Landau, U., A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization, J. Electrochem. Soc., 2004, vol. 151, no. 11, pp. C702–C711. https://doi.org/10.1149/1.1799431CrossRefGoogle Scholar
  25. 25.
    Moffat, T.P., Wheeler, D., Edelstein, M.D., and Josell, D., Superconformal film growth: Mechanism and quantification, IBM J. Res. Dev., 2005, vol. 49, no. 1, pp. 19–36. https://doi.org/10.1147/rd.491.0019CrossRefGoogle Scholar
  26. 26.
    Akolkar, R. and Landau, U., Mechanistic analysis of the “bottom-up” fill in copper interconnect metallization, J. Electrochem. Soc., 2009, vol. 156, no. 9, pp. D351–D359. https://doi.org/10.1149/1.3156640CrossRefGoogle Scholar
  27. 27.
    Adolf, J. and Landau, U., Predictive analytical fill model of interconnect metallization providing optimal additives concentrations, J. Electrochem. Soc., 2011, vol. 158, no. 8, pp. D469–D476. https://doi.org/ 10.1149/1.3593038CrossRefGoogle Scholar
  28. 28.
    Kruglikov, S.S., Kudryavtsev, N.T., and Semina, E.V., On the relationship between the molecular structure of organic inhibitors and their leveling effects in nickel electrodeposition, Proc. 7th International Metal Finishing Conf. “Interfinish-68”, Hannover, 1968, p. 66.Google Scholar
  29. 29.
    Kardos, O. and Foulke, D.G., Electrodeposition on small-scale profiles, Advances in Electrochemistry and Electrochemical Engineering, vol. 2: Electrochemical Engineering, Tobias, C.W., Ed., New York: Wiley-Interscience, 1962, p. 145.Google Scholar
  30. 30.
    De Vogelaere, M., Sommer, V., Springborn, H., and Michelsen-Mohammadein, U., High-speed plating for electronic applications, Electrochim. Acta, 2001, vol. 47, nos. 1–2, pp. 109–116. https://doi.org/10.1016/S0013-4686(01)00555-2CrossRefGoogle Scholar
  31. 31.
    Andricacos, P.C., Uzoh, C., Ducovic, J.O., Horkans, J., and Deligianni, H., Damascene copper electroplating for chip interconnections, IBM J. Res. Dev., 1998, vol. 42, no. 5, pp. 567–574. https://doi.org/10.1147/ rd.425.0567CrossRefGoogle Scholar
  32. 32.
    Healy, J.P., Pletcher, D., and Goodenough, M., The chemistry of the additives in an acid copper electroplating bath: Part I. Polyethylene glycol and chloride ion, J. Electroanal. Chem., 1992, vol. 338, nos. 1–2, pp. 155–165. https://doi.org/10.1016/0022-0728(92)80420-9CrossRefGoogle Scholar
  33. 33.
    Kelly, J.J. and West, A.C., Copper deposition in the presence of polyethylene glycol: I. Quartz crystal microbalance study, J. Electrochem. Soc., 1998, vol. 145, no. 10, pp. 3472–3476. https://doi.org/10.1149/ 1.1838829CrossRefGoogle Scholar
  34. 34.
    Kelly, J.J. and West, A.C., Copper deposition in the presence of polyethylene glycol: II. Electrochemical impedance spectroscopy, J. Electrochem. Soc., 1998, vol. 145, no. 10, pp. 3477–3481. https://doi.org/10.1149/ 1.1838830CrossRefGoogle Scholar
  35. 35.
    Feng, Z.V., Li, X., and Gewirth, A.A., Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths:  A surface-enhanced Raman study, J. Phys. Chem. B, 2003, vol. 107, pp. 9415–9423. https://doi.org/10.1021/jp034875mCrossRefGoogle Scholar
  36. 36.
    Doblhofer, K., Wasle, S., Soares, D.M., Weil, K.G., and Ertl, G., An EQCM study of the electrochemical copper(II)/copper(I)/copper system in the presence of PEG and chloride ions, J. Electrochem. Soc., 2003, vol. 150, no. 10, pp. C657–C664. https://doi.org/10.1149/ 1.1602083CrossRefGoogle Scholar
  37. 37.
    Kondo, K., Matsumoto, T., and Watanabe, K., Role of additives for copper damascene electrodeposition: Experimental study on inhibition and acceleration effects, J. Electrochem. Soc., 2004, vol. 151, no. 4, pp. C250–C255. https://doi.org/10.1149/1.1649235CrossRefGoogle Scholar
  38. 38.
    Moffat, T.P., Wheeler, D., Huber, W.H., and Josell, D., Superconformal electrodeposition of copper, Electrochem. Solid-State Lett., 2001, vol. 4, no. 4, pp. C26–C29. https://doi.org/10.1149/1.1354496CrossRefGoogle Scholar
  39. 39.
    Dow, W.-P., Yen, M.-Y., Lin, W.-B., and Ho, S.-W., Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating, J. Electrochem. Soc., 2005, vol. 152, no. 11, pp. C769–C775. https://doi.org/10.1149/1.2052019CrossRefGoogle Scholar
  40. 40.
    Mendez, J., Akolkar, R., and Landau, U., Polyether suppressors enabling copper metallization of high aspect ratio interconnects, J. Electrochem. Soc., 2009, vol. 156, no. 11, pp. D474–D479. https://doi.org/ 10.1149/1.3211849CrossRefGoogle Scholar
  41. 41.
    Huang, Q., Baker-O’Neal, B.C., Kelly, J.J., Broekmann, P., Wirth, A., Emnet, C., Martin, M., Hahn, M., Wagner, A., and Mayer, D., Suppressor effects during copper superfilling of sub-100 nm lines, Electrochem. Solid-State Lett., 2009, vol. 12, no. 4, pp. D27–D31. https://doi.org/10.1149/1.3078074CrossRefGoogle Scholar
  42. 42.
    Huang, Q., Liu, J., and Baker-O’Neal, B., An electrochemical method of suppressor screening for Cu plating in sub-100 nm lines, J. Electrochem. Soc., 2014, vol. 161, no. 5, pp. D207–D213. https://doi.org/10.1149/2.015405jesCrossRefGoogle Scholar
  43. 43.
    Ryan, K., Dunn, K., and van Eisden, J., Development of electrochemical copper deposition screening methodologies for next generation additive selection, Microelectron. Eng., 2012, vol. 92, pp. 91–94. https:// doi.org/10.1016/j.mee.2011.04.051CrossRefGoogle Scholar
  44. 44.
    Boehme, L. and Landau, U., Rapid screening of plating additives for bottom-up metallization of nano-scale features, J. Appl. Electrochem., 2016, vol. 46, no. 1, pp. 39–46. https://doi.org/10.1007/s10800-015-0873-5CrossRefGoogle Scholar
  45. 45.
    Medvedev, A. and Semenov, P., Pulsed metal plating of printed circuit boards, Tekhnol. Elektron. Prom-sti., 2005, no. 4, pp. 22–24.Google Scholar
  46. 46.
    Kruglikov, S.S., Kruglikova, E.S., and Kosmodamianskaya, L.V., On the role of the aspect ratio in the plating of PCBs, Proc. National Association for Surface Finishing Annual Conference and Trade Show 2010 (SUR/FIN 2010) (Grand Rapids, Mich., 2010), Washington, DC: National Association for Surface Finishing, 2010, vol. 2, pp. 779–788.Google Scholar
  47. 47.
    Kruglikov, S.S. and Nekrasova, N.E., Theoretical evaluation of the effects of PR current on metal distribution on the cathode surface, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 1, pp. 34–38.Google Scholar
  48. 48.
    Kruglikov, S.S., Kosmodamianskaya, L.V., Kravchenko, D.V., and Odinokova, I.V., Throwing power of copper plating solutions with high concentration of sulfuric acid, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 3, pp. 35–39.Google Scholar
  49. 49.
    Kruglikov, S.S., Nekrasova, N.E., and Levin, G.G., On the effect of low-frequency pulse reverse current on the distribution of copper deposited from sulfate bath with leveling additive, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 4, pp. 25–29.Google Scholar
  50. 50.
    Kosarev, A.A., Kalinkina, A.A., Vagramyan, T.A., Serov, A.N., Nekrasova, N.E., and Kruglikov, S.S., A study of parameters of pulse reverse current and bath composition on the throwing power of copper plating electrolyte, Gal’vanotekh. Obrab. Poverkhn., 2017, vol. 25, no. 2, pp. 41–47.Google Scholar
  51. 51.
    Kruglikov, S.S., Nekrasova, N.E., Kasatkin, V.E., and Kornilova, S.I., Electrodeposition of metal layers with high mechanical strength and large true surface area using pulsing current, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 4, pp. 30–38.Google Scholar
  52. 52.
    Zagorskiy, D.L., Artemov, V.V., Korotkov, V.V., Kruglikov, S.S., and Bedin, S.A., Specific features of the growth and stability of nanowires made of different metals, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2017, vol. 11, no. 1, pp. 99–106. https://doi.org/10.1134/S1027451016050633CrossRefGoogle Scholar
  53. 53.
    Zagorskiy, D.L., Korotkov, V.V., Frolov, K.V., Sulyanov, S.N., Kudryavtsev, V.N., Kruglikov, S.S., and Bedin, S.A., Track pore matrixes for the preparation of Co, Ni and Fe nanowires: Electrodeposition and their properties, Phys. Procedia, 2015, vol. 80, pp. 144–147. https://doi.org/10.1016/j.phpro.2015.11.090CrossRefGoogle Scholar
  54. 54.
    Kruglikova, E.S., Kruglikov, S.S., and Nekrasova, N.E., On the microthrowing power of chromium plating baths, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 3, pp. 4–9.Google Scholar
  55. 55.
    Kruglikov, S.S., Nekrasova, N.E., and Kruglikova, E.S., On the use of pulse reverse plating for the intensification of processes, Gal’vanotekh. Obrab. Poverkhn., 2014, vol. 22, no. 2, pp. 24–28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. S. Kruglikov
    • 1
    Email author
  • V. A. Kolesnikov
    • 1
  • N. E. Nekrasova
    • 1
  • A. F. Gubin
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations