Advertisement

Theoretical Foundations of Chemical Engineering

, Volume 52, Issue 6, pp 1019–1028 | Cite as

Probability Density Function Modeling of Turbulence/Chemistry Interactions in Methane Flame Enrichment by Hydrogen

  • Fethi BourasEmail author
  • Fouad Khaldi
Article
  • 10 Downloads

Abstract

The present investigation illustrates a computational study of the turbulent diffusion flame in a cylindrical burner that is confined by two coaxial jets (methane/hydrogen and air). This is to improve the reactive mixture, the reactants combustion and to reduce the concentration of carbon monoxide as pollutant chemical species. The coupled models LES/PDF are, hereby, used to surmount the turbulence/chemistry interaction in the transport equations of chemical species. The predicted mixture fraction, the progress variable, and the carbon monoxide mass fraction are selected to validate the coupled models with respect to the experimental references data. Furthermore, the same scalar parameters which are considered in the previous numerical validation are evaluated from different fuel compositions of the hydrogen and the methane percentage to supply the combustion chamber. The computed results are carried out by FLUENT-CFD; where, they prove that hydrogen addition reduces the carbon monoxide concentration in the combustion products and improves the reactants combustion caused by the rich mixture.

Keywords:

non-premixed combustion diffusion flame turbulence probability density function (PDF) large eddy simulation (LES) hydrogen fuel computational fluid dynamics (CFD) 

REFERENCES

  1. 1.
    Dinesh, K.K.J.R., Jiang, X., and van Oijen, J.A., Hydrogen-enriched non-premixed jet flames: Analysis of the flame surface, flame normal, flame index and Wobbe index, Int. J. Hydrogen Energy, 2014, vol. 39, no. 12, p. 6753. https://doi.org/10.1016/j.ijhydene.2014.01.208CrossRefGoogle Scholar
  2. 2.
    Cohé, C., Halter, F., Chauveau, C., Gokalp, I., and Gulder, O.L., Fractal characterisation of high-pressure and hydrogen-enriched CH4–air turbulent premixed flames, Proc. Combust. Inst., 2007, vol. 31, no. 1, p. 1345.CrossRefGoogle Scholar
  3. 3.
    Navarro-Martinez, S., Large eddy simulation of spray atomization with a probability density function method, Int. J. Multiphase Flow, 2014, vol. 63, p. 11.CrossRefGoogle Scholar
  4. 4.
    Pei, Y., Hawkes, E.R., and Kook, S., Transported probability density function modeling of the vapour phase of an n-heptane jet at diesel engine conditions, Proc. Combust. Inst., 2013, vol. 34, no. 2, p. 3039.CrossRefGoogle Scholar
  5. 5.
    Maroteaux, F. and Pommier, P.L., A turbulent time scale based k–ε model for probability density function modeling of turbulence/chemistry interactions: Application to HCCI combustion, Int. J. Heat Fluid Flow, 2013, vol. 42, p. 105.CrossRefGoogle Scholar
  6. 6.
    Wang, H. and Chen, Y., PDF modelling of turbulent non-premixed combustion with detailed chemistry, Chem. Eng. Sci., 2004, vol. 59, no. 19, p. 3477.CrossRefGoogle Scholar
  7. 7.
    Guo, Z.M., Zhang, H.Q., Chan, C.K., and Lin, W.Y., Presumed joint probability density function model for turbulent combustion, Fuel, 2003, vol. 82, no.11, p. 1091.CrossRefGoogle Scholar
  8. 8.
    Amani, E. and Nobari, M.R.H., An efficient PDF calculation of flame temperature and major species in turbulent non-premixed flames, Appl. Math. Modell., 2010, vol. 34, no. 8, p. 2223.CrossRefGoogle Scholar
  9. 9.
    Elattar, H.F., Stanev, R., Specht, E., and Fouda, A., CFD simulation of confined non-premixed jet flames in rotary kilns for gaseous fuels, Comput. Fluids, 2014, vol. 102, p. 62.CrossRefGoogle Scholar
  10. 10.
    Stöllinger, M. and Heinz, S., PDF modeling and simulation of premixed turbulent combustion, Monte Carlo Methods Appl., 2008, vol. 14, no. 9, p. 343.CrossRefGoogle Scholar
  11. 11.
    Bisetti, F., Chenb, J.Y., Hawkes, E.R., and Chen, J.H., Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratified mixture for application to HCCI engine modeling, Combust. Flame, 2008, vol. 155, p. 571.CrossRefGoogle Scholar
  12. 12.
    Stöllinger, M., Naud, B., Roekaerts, D., Beishuizen, N., and Heinz, S., PDF modeling and simulations of pulverized coal combustion – Part 2: Application, Combust. Flame, 2013, vol. 160, no. 4, p. 396.CrossRefGoogle Scholar
  13. 13.
    Bouras, F., Soudani, A., and Si-Ameur, M., Thermochemistry study of internal combustion engine, Energy Procedia, 2012, vol. 18, p. 1086.CrossRefGoogle Scholar
  14. 14.
    Pierce, C.D. and Moin, P., Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech., 2004, vol. 504, p. 73.CrossRefGoogle Scholar
  15. 15.
    Haworth, D.C., Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci., 2010, vol. 36, no. 2, p. 168.CrossRefGoogle Scholar
  16. 16.
    Bouras, F., Soudani, A., and Si-Ameur, M., Beta-PDF approach for large eddy simulation of nonpremixed turbulent combustion, Int. Rev. Mech. Eng., 2010, vol. 4, no. 3, p. 1096.Google Scholar
  17. 17.
    Koo, H., Donde, P., and Raman, V., A quadrature-based LES/transported probability density function approach for modeling supersonic combustion, Proc. Combust. Inst., 2011, vol. 33, no. 2, p. 2203.CrossRefGoogle Scholar
  18. 18.
    Bouras, F., Numerical study of turbulent structures for lean premixed prevaporized combustion, J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 4, p. 614.CrossRefGoogle Scholar
  19. 19.
    Bouras, F., Si-Ameur, M., and Soudani, A., Large eddy simulation for lean premixed combustion, Can. J. Chem. Eng., 2013, vol. 91, no. 2, p. 231.CrossRefGoogle Scholar
  20. 20.
    Wang, H. and Pope, S.B., Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame, Proc. Combust. Inst., 2011, vol. 33, no. 1, p. 1319.CrossRefGoogle Scholar
  21. 21.
    Akansu, S.O., Kahraman, N., and Çeper, B., Experimental study on a spark ignition engine fuelled by methane–hydrogen mixtures, Int. J. Hydrogen Energy, 2007, vol. 32, no. 17, p. 4279. https://doi.org/ 10.1016/j.ijhydene.2007.05.034CrossRefGoogle Scholar
  22. 22.
    Wang, J., Huang, Z., Tang, C., Miao, H., and Wang, X., Numerical study of the effect of hydrogen addition on methane–air mixtures combustion, Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, p. 1084.CrossRefGoogle Scholar
  23. 23.
    Ayoub, M., Rottier, C., Carpentier, S., Villermaux, C., Boukhalfa, A.M., and Honoré, D., An experimental study of mild flameless combustion of methane/hydrogen mixtures, Int. J. Hydrogen Energy, 2012, vol. 37, no. 8, p. 6912.CrossRefGoogle Scholar
  24. 24.
    Kim, H.S., Arghode, V.K., Linck, M.B., and Gupta, A.K., Hydrogen addition effects in a confined swirl-stabilized methane-air flame, Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, p. 1054.CrossRefGoogle Scholar
  25. 25.
    Kim, H.S., Arghode, V.K., and Gupta, A.K., Flame characteristics of hydrogen-enriched methane–air premixed swirling flames, Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, p. 1063.CrossRefGoogle Scholar
  26. 26.
    Bouras, F., Soudani, A., and Si-Ameur, M., Numerical study of the turbulent flow inside an ORACLES configuration, J. Appl. Mech., 2012, vol. 79, no. 5, p. 51014. https://doi.org/doi:10.1115/1.4006455CrossRefGoogle Scholar
  27. 27.
    Bouras, F. and Soudani, A., Impact of the equivalence ratio and the mass flow rate on turbulent lean premixed prevaporized combustion, Energy Procedia, 2011, vol. 6, p. 251.CrossRefGoogle Scholar
  28. 28.
    Wang, H. and Kim, K., Effect of molecular transport on PDF modeling of turbulent non-premixed flames, Proc. Combust. Inst., 2015, vol. 35, no. 2, p. 1137.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.LPEA, University of HL-BATNABatnaAlgeria
  2. 2.University of HL-El OuedEl OuedAlgeria

Personalised recommendations