Theoretical Foundations of Chemical Engineering

, Volume 52, Issue 6, pp 996–1003 | Cite as

Hydrothermal Carbonization of Organic Components from Municipal Solid Waste

  • M. S. VlaskinEmail author
  • G. N. Vladimirov


The hydrothermal carbonization of organic ingredients from municipal solid waste (exemplified by apples, meat, offset paper, newsprint, birch and oak sawdust, cotton cloth, polypropylene, and polyethylene terephthalate) is studied in the temperature range 240–280°C. The yield of the solid hydrothermal carbonization product (excluding plastics) is 0.50–0.62 at 240°C, 0.46–0.54 at 260°C, and 0.37–0.46 at 280°C. The yield of the solid product in the case of polypropylene and polyethylene terephthalate is close to 1. When increasing the temperature, the carbon content of the solid product increases from 45–52% for the initial ingredients to 61–75% for the products obtained at 280°C (excluding plastics). The calorific value of the products of hydrothermal carbonization obtained from organic waste with a calorific value of 15 to 19 MJ/kg (excluding plastics) is 19–26 MJ/kg for 240°C and 21–29 MJ/kg for 280°C. The products of the hydrothermal treatment of apples and sawdust at 280°C have the highest calorific values (28–29 MJ/kg). The calorific value of plastics after hydrothermal treatment remains practically unchanged.


municipal solid waste organic waste hydrothermal carbonization hydrochar Van Krevelen diagram 



This work was supported by the Russian Foundation for Basic Research and the Moscow Government (project no. 15-38-70008) and the Russian President’s Grant (grant no. MK-6302.2018.8) for the State Support of Young Russian Scientists.


  1. 1.
    Mavropoulos, A., Wilson, D., Cooper, J., Velis, C., and Appelqvist, B., Globalization and Waste Management: Phase 1. Concepts and Facts. Vienna: International Solid Waste Association (ISWA), 2012.Google Scholar
  2. 2.
    Municipal Waste Generation and Treatment, by Type of Treatment Method, Luxembourg: Eurostat, 2015.Google Scholar
  3. 3.
    Kirillov, V.V., O regional’nykh aspektakh obrashcheniya s otkhodami potrebleniya v Rossiiskoi Federatsii (On the Regional Aspects of Consumer Waste Treatment in the Russian Federation), Moscow: Rosprirodnadzor, 2013.Google Scholar
  4. 4.
    Gohlke, O. and Martin, J., Drivers for innovation in waste-to-energy technology, Waste Manage. Res., 2007, vol. 25, no. 3, p. 214.CrossRefGoogle Scholar
  5. 5.
    Lombardi, L., Carnevale, E., and Corti, A., A review of technologies and performances of thermal treatment systems for energy recovery from waste, Waste Manage., 2015, vol. 37, p. 26.CrossRefGoogle Scholar
  6. 6.
    Nzioka, A.M., Kim, M.G., Hwang, H.U., Yan, C.Z., Ved, V.E., Meshalkin, V.P., and Kim, Y.J., Experimental investigation on the drying of loosely-packed and heterogeneous municipal solid waste, Theor. Found. Chem. Eng., 2016, vol. 50, no. 4, p. 414.CrossRefGoogle Scholar
  7. 7.
    Fitzgerald, G.C., Pre-processing and treatment of municipal solid waste (MSW) prior to incineration, Waste to Energy Conversion Technology, Klinghoffer, N.B. and Castaldi, M.J., Eds., Woodhead Publishing Series in Energy, Sawston, Cambridgeshire: Woodhead, 2013, ch. 5, p. 55.Google Scholar
  8. 8.
    Klinghoffer, N.B. and Castaldi, M.J., Gasification and pyrolysis of municipal solid waste (MSW), Waste to Energy Conversion Technology, Klinghoffer, N.B. and Castaldi, M.J., Eds., Woodhead Publishing Series in Energy, Sawston, Cambridgeshire: Woodhead, 2013, ch. 9, p. 146.Google Scholar
  9. 9.
    Matsakas, L., Gao, Q., Jansson, S., Rova, U., and Christakopoulos, P., Green conversion of municipal solid wastes into fuels and chemicals, Electron. J. Biotechnol., 2017, vol. 26, p. 69.CrossRefGoogle Scholar
  10. 10.
    Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.-M., et al., Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis, Biofuels, 2011, vol. 2, no. 1, p. 71.CrossRefGoogle Scholar
  11. 11.
    Cui, X., Antonietti, M., and Yu, S.-H., Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates, Small, 2006, vol. 2, no. 6, p. 756.CrossRefGoogle Scholar
  12. 12.
    Demir-Cakan, R., Baccile, N., Antonietti, M., and Titirici, M.-M., Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid, Chem. Mater., 2009, vol. 21, no. 3, p. 484.CrossRefGoogle Scholar
  13. 13.
    Zhen, F., Kaibin, T., Shuijin, L., and Tanwei, L., CTAB-assisted hydrothermal synthesis of Ag/C nanostructures, Nanotechnology, 2006, vol. 17, no. 12, p. 3008.CrossRefGoogle Scholar
  14. 14.
    Wang, Q., Li, H., Chen, L., and Huang, X., Monodispersed hard carbon spherules with uniform nanopores, Carbon, 2001, vol. 39, no. 14, p. 2211.CrossRefGoogle Scholar
  15. 15.
    Jain, A., Xu, C., Jayaraman, S., Balasubramanian, R., Lee, J.Y., and Srinivasan, M.P., Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications, Microporous Mesoporous Mater., 2015, vol. 218, p. 55.CrossRefGoogle Scholar
  16. 16.
    Sevilla, M., Fuertes, A.B., and Mokaya, R., High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials, Energy Environ. Sci., 2011, vol. 4, no. 4, p. 1400.CrossRefGoogle Scholar
  17. 17.
    Hwang, I.-H., Aoyama, H., Matsuto, T., Nakagishi, T., and Matsuo, T., Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water, Waste Manage., 2012, vol. 32, no. 3, p. 410.CrossRefGoogle Scholar
  18. 18.
    Panasyuk, G.P., Izotov, A.D., Azarova, L.A., Shabalin, D.G., and Voroshilov, I.L., New methods for utilization of waste polyethylene terephthalate, Theor. Found. Chem. Eng., 2015, vol. 49, no. 4, p. 580.CrossRefGoogle Scholar
  19. 19.
    Panasyuk, G.P., Azarov, L.A., Voroshilov, I.L., Belan, V.N., Kozerozhets, I.V., Semenov, E.A., Stolyarova, V.P., et al., New techniques for processing wastepaper, Theor. Found. Chem. Eng., 2016, vol. 50, no. 4, p. 660.CrossRefGoogle Scholar
  20. 20.
    Pipatti, R., Sharma, C., and Yamada, M., Waste generation, composition and management data, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 5: Waste, Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., Eds., Hayama, Japan: Institute for Global Environmental Strategies (IGES), 2006, ch. 2, p. 2.1.Google Scholar
  21. 21.
    Fagerson, I.S., Thermal degradation of carbohydrates: A review, J. Agric. Food Chem., 1969, vol. 17, no. 4, p. 747.CrossRefGoogle Scholar
  22. 22.
    Giudicianni, P., Cardone, G., and Ragucci, R., Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures, J. Anal. Appl. Pyrolysis, 2013, vol. 100, p. 213.CrossRefGoogle Scholar
  23. 23.
    Lin, Y., Ma, X., Peng, X., and Yu, Z., A mechanism study on hydrothermal carbonization of waste textile, Energy Fuels, 2016, vol. 30, no. 9, p. 7746.CrossRefGoogle Scholar
  24. 24.
    Kostyukevich, Y., Vlaskin, M., Vladimirov, G., Zherebker, A., Kononikhin, A., Popov, I., and Nikolaev, E., The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, Eur. J. Mass Spectrom., 2017, vol. 23, no. 2, p. 83.CrossRefGoogle Scholar
  25. 25.
    Vlaskin, M.S., Properties of municipal solid waste as an energy carrier, Tverd. Bytovye Otkhody, 2016, no. 8, p. 25.Google Scholar
  26. 26.
    Vlaskin, M.S., Properties of municipal solid waste as an energy carrier, Tverd. Bytovye Otkhody, 2016, no. 9, p. 32.Google Scholar
  27. 27.
    Hla, S.S. and Roberts, D., Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia, Waste Manage., 2015, vol. 41, p. 12.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations