Theoretical Foundations of Chemical Engineering

, Volume 52, Issue 6, pp 1004–1018 | Cite as

Stochastic Description of the Formation of Flows of Particulate Components in Apparatuses with Brush Elements

  • A. B. KapranovaEmail author
  • I. I. Verloka


Using a stochastic method of mathematical modeling with different (equilibrium or nonequilibrium) representations of the state of the macrosystem (closed or open for energy exchange), methods are proposed for determining the total differential scattering angle distribution functions of particulate components during the operation of brush mixers of various design with or without taking into account particle collisions.


process mixing brush element particulate components model distribution function scattering angle 



  1. 1.
    Makarov, Yu.I., Apparaty dlya smesheniya sypuchikh materialov (Apparatuses for the Mixing of Bulk Materials), Moscow: Mashinostroenie, 1973.Google Scholar
  2. 2.
    Timonin, A.S., Baldin, B.G., Borshchev, V.Ya., Gusev, Yu.I., et al., Mashiny i apparaty khimicheskikh proizvodstv (Machinery and Equipment of Chemical Plants), Kaluga: Izd. N.F. Bochkarevoi, 2008.Google Scholar
  3. 3.
    Bakin, M.N., Kapranova, A.B., and Verloka, I.I., Modern apparatuses with a moving belt for the mixing of bulk materials, Fundam. Issled., 2014, no. 5, pp. 687–691.Google Scholar
  4. 4.
    Bakin, M.N., Kapranova, A.B., and Verloka, I.I., Up-to-date methods for mathematical description of the mixing of bulk materials, Fundam. Issled., 2014, no. 5, pp. 923–927.Google Scholar
  5. 5.
    Borodulin, D.M., Increasing the efficiency of mixing in the production of combined products in centrifugal mixing units, Extended Abstract of Doctoral (Eng.) Dissertation, Kemerovo, 2013.Google Scholar
  6. 6.
    Aun, M., Barantseva, E.A., Mizonov, V.E., and Bert’e, A., Mathematical model of a batch mixer, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2001, vol. 44, no. 3, p. 140.Google Scholar
  7. 7.
    Pershin, V.F. and Selivanov, Yu.T., Modeling of the mixing of particulate materials in continuous-circulating mixers, Theor. Found. Chem. Eng., 2003, vol. 37, no. 6, p. 590.CrossRefGoogle Scholar
  8. 8.
    Akhmadiev, F.G. and Nazipov, I.T., Stochastic modeling of the kinetics of processing of heterogeneous systems, Theor. Found. Chem. Eng., 2013, vol. 47, no. 2, pp. 136–143. Scholar
  9. 9.
    Kapranova, A.B., Bakin, M.N., Verloka, I.I., and Zaitsev, A.I., Methods for describing the motion of solid dispersion media in different planes for the cross sections of a mixing drum, Vestn. Tambov. Gos. Tekh. Univ., 2015, vol. 21, no. 2, p. 296.Google Scholar
  10. 10.
    Kapranova, A.B. and Verloka, I.I., Key component content estimation after impact dispersion of bulk materials at the initial stage of batch mixing, Vestn. IGEU, 2016, no. 3, pp. 78–83. 10.17588/2072-2672.2016.3.078-083Google Scholar
  11. 11.
    Kapranova, A.B., Verloka, I.I., Lebedev, A.E., and Zaitzev, A.I., The model of dispersion of particles during their flow from chipping the surface, Czas. Tech. Mech., 2016, vol. 113, no. 2, p. 145.Google Scholar
  12. 12.
    Klimontovich, Yu.L., Turbulentnoe dvizhenie i struktura khaosa: novyi podkhod k statisticheskoi teorii otkrytykh sistem (Turbulent Motion and Structure of Chaos: A New Approach to the Statistical Theory of Open Systems), Moscow: LENAND, 2014.Google Scholar
  13. 13.
    Babukha, G.L. and Shraiber, A.A., Vzaimodeistvie chastits polidispersnogo materiala v dvukhfaznykh potokakh (Interaction of the Particles of a Polydisperse Material in Two-Phase Flows), Kiev: Naukova Dumka, 1972.Google Scholar
  14. 14.
    Protod'yakonov, I.O. and Bogdanov, S.R., Statisticheskaya teoriya yavlenii perenosa v protsessakh khimicheskoi tekhnologii (Statistical Theory of Transport Phenomena in Chemical Engineering Processes), Leningrad: Khimiya, 1983.Google Scholar
  15. 15.
    Zaitsev, A.I. and Bytev, D.O., Udarnye protsessy v dispersno-plenochnykh sistemakh (Impact Processes in Film Disperse Systems), Moscow: Khimiya, 1994.Google Scholar
  16. 16.
    Kapranova, A.B., Lebedev, A.E., Bytev, D.O., and Zaitsev, A.I., Stochastic description of motion of the clarified fraction of a suspension of powders, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2004, vol. 47, no. 6, p. 99.Google Scholar
  17. 17.
    Verloka, I.I., Kapranova, A.B., and Lebedev, A.E., Modern gravitational continuous apparatuses for the mixing of bulk materials, Inzh. Vestn. Dona, 2014, no. 4. 2599. Accessed July 30, 2016.Google Scholar
  18. 18.
    Bakin, M.N., Kapranova, A.B., and Verloka, I.I., Investigation of the distribution of bulk components in the working volume of a drum–ribbon mixer, Fundam. Issled., 2014, no. 5, pp. 928–933.Google Scholar
  19. 19.
    Kapranova, A.B., Verloka, I.I., and Zaitsev, A.I., Comparison of kinetic equations in stochastic models for the mixing of bulk materials, Sbornik trudov XXVIII Mezhdunarodnoi nauchnoi konferentsii “Matematicheskie metody v tekhnike i tekhnologiyakh – MMTT-28” (Proc. XXVIII International Scientific Conference “Mathematical Methods in Engineering and Technology – MMET-28”), Saratov: Saratov. Gos. Tekh. Univ., 2015, vol. 8, p. 241.Google Scholar
  20. 20.
    Verloka, I., Kapranova, A., Tarshis, M., and Cherpitsky, S., Stochastic modeling of bulk components batch mixing process in gravity apparatus, Int. J. Mech. Eng. Technol., 2018, vol. 9, no. 2, p. 438.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Yaroslavl State Technical UniversityYaroslavlRussia

Personalised recommendations