Advertisement

Methods for High-Purity Aluminum Oxide Production for Growth of Leucosapphire Crystals (Review)

  • G. P. PanasyukEmail author
  • L. A. Azarova
  • V. N. Belan
  • E. A. Semenov
  • M. N. Danchevskaya
  • I. L. Voroshilov
  • I. V. Kozerozhets
  • S. A. Pershikov
  • S. Yu. Kharatyan
TECHNOLOGY OF INORGANIC SUBSTANCES AND MATERIALS
  • 5 Downloads

Abstract

Methods for the preparation of raw materials to produce leucosapphire are considered. It is shown that the main directions in the production of high-purity aluminum oxide raw materials are: electrochemical oxidation of aluminum, decomposition of alkoxides, high-temperature treatment of aluminum oxide in a halogen-containing atmosphere, and preliminary purification of aluminum-containing compounds followed by their decomposition. It is shown that methods of the purification of aluminum hydroxide and oxide obtained by the Bayer process are the most promising for industrial use. These methods include the complex purification and simultaneous preparation of ceramic preforms starting from aluminum hydroxides or oxides by their treatment in subcritical or supercritical steam and the following heat treatment in a halogen-containing medium.

Keywords:

leucosapphire alkoxides aluminum oxide thermal treatment 

Notes

REFERENCES

  1. 1.
    Akselrod, M.S. and Bruni, F.J., Modern trends in crystal growth and new applications of sapphire, J. Cryst. Growth, 2012, vol. 360, pp. 134–145. https://doi.org/ 10.1016/j.jcrysgro.2011.12.038CrossRefGoogle Scholar
  2. 2.
    Dobrovinskaya, E.R., Lytvynov, L.A., and Pishchik, V., Sapphire: Material, Manufacturing, Applications, Series in Micro- and Opto-Electronic Materials, Structures, and Systems, New York: Springer, 2009.Google Scholar
  3. 3.
    Techart.Research, Analysis of the Russian market of high-purity aluminum oxide and leucosapphire. http:// research-techart.ru/report/sapphire-report.htm. Accessed March 30, 2017.Google Scholar
  4. 4.
    Yole Développement, Sapphire applications & market 2016: LED and consumer electronics, 2016 report by Yole Développement. https://www.i-micronews.com/ report/product/sapphire-applications-market-2016-led-and-consumer-electronic.html. Accessed March 30, 2017.Google Scholar
  5. 5.
    Bagdasarov, Kh.S., Vysokotemperaturnaya kristallizatsiya iz rasplava (High-Temperature Melt Crystallization), Moscow: Fizmatlit, 2004.Google Scholar
  6. 6.
    Fil'tsov, R., Corundum of the first water, Pryamye Investitsii, 2012, no. 1 (117), pp. 42–43.Google Scholar
  7. 7.
    Lainer, A.I., Proizvodstvo glinozema (Alumina Production), Moscow: Metallurgizdat, 1961.Google Scholar
  8. 8.
    Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., and Shabalin, D.G., Aluminum hydroxide transformations during thermal and vapor heat treatments, Inorg. Mater., 2008, vol. 44, no. 1, pp. 45–50. https://doi.org/ 10.1134/S002016850801007XCrossRefGoogle Scholar
  9. 9.
    Sumitomo Chemical Co., Product databook. http://  www.sumitomo-chem.co.jp/products/docs/en_a06000. pdf. Accessed March 30, 2017.Google Scholar
  10. 10.
    Khanamirova, A.A., Glinozem i puti umen’sheniya soderzhaniya v nem primesei (Alumina and Ways to Decrease the Concentration of Impurities in It), Yerevan: Akad. Nauk Arm. SSR, 1983.Google Scholar
  11. 11.
    Shkol’nikov, E.I., Lisitsyn, A.V., Vlaskin, M.S., Zhuk, A.Z., and Sheindlin, A.E., RF Patent 2519450, 2014.Google Scholar
  12. 12.
    Lysenko, A.P., Murygin, A.G., and Nalivaiko, A.Yu., RF Patent 2538 606, 2013.Google Scholar
  13. 13.
    Bairamov, R.K., Sabanin, A.V., Gorozhankin, E.V., Boevskaya, E.A., and Evglevskii, G.M., RF Patent 882143, 2003.Google Scholar
  14. 14.
    Yoo, S.-J., Yoon, H.-S., Jang, H. D., Lee, J.-W., Hong, S.-T., Lee, M.-J., Lee, S.-I., and Jun, K.-W., Synthesis of aluminum isopropoxide from aluminum dross, Korean J. Chem. Eng., 2006, vol. 23, no. 4, pp. 683–687. https://doi.org/10.1007/BF02706815CrossRefGoogle Scholar
  15. 15.
    Drobotenko, V.V., Balabanov, S.S., and Storozheva, T.I., RF Patent 2395514, 2010.Google Scholar
  16. 16.
    SITIS Innovation and Engineering Center, NANOKORUND: A plant for the production of ultrapure aluminum oxide. http://nizhegorod-reg.lexot.ru/lecomp. Accessed March 30, 2017.Google Scholar
  17. 17.
    Gorshtein, G.I., Ermolina, N.S., and Fridenberg, E.S., Study of processes for fine purification from trace contaminants in the production of high-purity ammonium alum, Tr. IREA, 1967, vol. 30, p. 452.Google Scholar
  18. 18.
    Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Moscow: Khimiya, 1965, vol. 3, 2nd ed.Google Scholar
  19. 19.
    Wojciechowska, R., Wojciechowski, W., and Kamiński, J., Thermal decompositions of ammonium and potassium alums, J. Therm. Anal. Calorim., 1988, vol. 33, no. 2, pp. 503–509. https://doi.org/10.1007/ BF01913929CrossRefGoogle Scholar
  20. 20.
    Bachelard, R. and Barral, R., US Patent 4377566, 1983.Google Scholar
  21. 21.
    Karyakin, Yu.V. and Angelov, I.I., Chistye khimicheskie veshchestva (Pure Chemical Substances), Moscow: Khimiya, 1974.Google Scholar
  22. 22.
    Zakutinkii, V.L., Blyakher, I.G., Kondratenko, A.B., Lashkevich, B.N., Vorko, R.M., and Pgulyai, N.A., USSR Inventor’s Certificate no. 278657, 1968.Google Scholar
  23. 23.
    Mokhri, M., Utida, I., Savabe, I., and Vatanabe, Kh, RF Patent 2118612, 1993.Google Scholar
  24. 24.
    Tatartchenko, V.A., Sapphire crystal growth and applications, Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials, Capper, P., Ed., Wiley Series in Materials for Electronic and Optoelectronic Applications, Chichester: Wiley, 2005, ch. 10, pp. 299– 338.Google Scholar
  25. 25.
    Petrov, Yu.B., Induktsionnaya plavka okislov (Induction Melting of Oxides), Leningrad: Energoatomizdat, 1983.Google Scholar
  26. 26.
    Lopukh, D.B., Petrov, Yu.B., Pechenkov, A.Yu., Lyubomirov, A.M., and Martynov, A.P., Induction melting of oxides in cold crucibles, Perspekt. Mater., 1999, no. 6, pp. 72–77.Google Scholar
  27. 27.
    Filippov, A.K., RF Patent 2128148, 1999.Google Scholar
  28. 28.
    RSA LE RUBIS. http://www.rubisrsa.com. Accessed March 30, 2017.Google Scholar
  29. 29.
    Sokolov, V.M., Tekhnologiya kompaktirovaniya (Compaction Technology), Tomsk: Tomsk. Politekh. Univ., 2009.Google Scholar
  30. 30.
    Ozaki, H. and Fujiwara, S., US Patent 2011/0123805 A1, 2011.Google Scholar
  31. 31.
    All-Russian Scientific Research Institute of High-Frequency Currents, A KRISTALL-407 induction installation. http://www.vniitvch.ru/tables/kristall_407.pdf. Accessed March 30, 2017.Google Scholar
  32. 32.
    Danchevskaya, M.N., Ivakin, Yu.D., Torbin, S.N., and Panasyuk, G.P., RF Patent 2340557, 2008.Google Scholar
  33. 33.
    Panasyuk, G.P., Kozerozhets, I.V., Voroshilov, I.L., and Belan, V.N., RF Patent 2424189, 2010.Google Scholar
  34. 34.
    Danchevskaya, M.N., Ivakin, Yu.D., Bagdasarov, Kh.S., Antonov, E.V., Kostomarov, D.V., and Panasyuk, G.P., Synthetic fine-crystalline corundum: A new raw material for the growth of leucosapphire, Perspekt. Mater., 2009, no. 4, pp. 27–33.Google Scholar
  35. 35.
    Panasyuk, G.P., Danchevskaya, M.N., Belan, V.N., Voroshilov, I.L., and Ivakin, Yu.D., Phenomenology of corundum crystal formation in supercritical water fluid, J. Phys.: Condens. Matter, 2004, vol. 16, no. 14, pp. 1215–1221. https://doi.org/10.1088/0953-8984/ 16/14/033Google Scholar
  36. 36.
    Panasyuk, G.P., Azarova, L.A., Shabalin, D.G., Voroshilov, I.L., and Belan, V.N., High-purity ceramics: A raw material for the production of leucosapphire, VII Nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiem “Sverkhkriticheskie flyuidy: fundamental’nye osnovy, tekhnologii, innovatsii”. Tezisy dokladov (Abstracts of Papers Presented at the VII Scientific and Engineering Conference with International Participation “Supercritical Fluids: Fundamentals, Technologies, and Innovations”), Zelenogradsk, 2013, pp. 137–138.Google Scholar
  37. 37.
    Laufnburg, K., Mel’tgen, P., Vil’khelbm, P.R., and Lyutte, M., RF Patent 2167841, 1996.Google Scholar
  38. 38.
    Malyukov, S. and Klunnikova, Yu., Optimization of the production of domestic sapphire, Sovrem. Elektron., 2015, no. 6, pp. 24–31.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. P. Panasyuk
    • 1
    Email author
  • L. A. Azarova
    • 1
  • V. N. Belan
    • 1
  • E. A. Semenov
    • 1
  • M. N. Danchevskaya
    • 1
  • I. L. Voroshilov
    • 1
  • I. V. Kozerozhets
    • 1
  • S. A. Pershikov
    • 1
  • S. Yu. Kharatyan
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations