Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 3, pp 412–424 | Cite as

Restriction of the Fermion Mass Spectrum in PT-Symmetric Systems and its Implications For Studying Dark Matter

  • V. N. RodionovEmail author
  • A. M. Mandel
  • G. A. Kravtsova
Article
  • 9 Downloads

Abstract

We formulate principal positions of a non-Hermitian model with a γ5-extension of the fermion mass, which are often neglected in investigating this subject. A consistent approach to this problem requires the constraint m ≤ M, where M bounds the entire fermion mass spectrum. An analogous approach was proposed in the geometric model, which can be regarded as the first PT-symmetric non-Hermitian fermion model with a γ5-extension of mass. Exotic particles appear in both these theories. A detailed consideration of the properties of these particles allows conjecturing that they are possible candidates in the structure of dark matter. We also discuss a simple estimate for determining the maximum admissible value of the fermion mass M.

Keywords

mass spectrum restriction two zones of PT symmetry two-mass paradox exotic particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Abazajian, “Sterile neutrinos in cosmology,” Phys. Rep., 711–712, 1–28 (2017); arXiv:1705.01837v3 [hep-ph] (2017).CrossRefzbMATHGoogle Scholar
  2. 2.
    G. Krnjaic, P. A. N. Machado, and L. Necib, “Distorted neutrino oscillations from time varying cosmic fields,” Phys. Rev. D, 97, 075017 (2018); arXiv:1705.06740v1 [hep-ph] (2017).ADSCrossRefGoogle Scholar
  3. 3.
    V. M. Lobashev, “The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN,” Nucl. Phys. A, 719, C153–C160 (2003).Google Scholar
  4. 4.
    V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Lihovid, V. M. Lobashev, A. A. Nozik, V. S. Pantuev, V. I. Parfenov, A. K. Skasyrskaya, F. V. Tkachov, and S. V. Zadorozhny, “Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment,” Phys. Atom. Nucl., 75, 464–478 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett., 80, 5243–5246 (1998); arXiv:physics/9712001v3 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys., 70, 947–1018 (2007).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. N. Rodionov and G. A. Kravtsova, “The algebraic and geometric approaches to PT -symmetric non-Hermitian relativistic quantum mechanics with maximal mass,” Moscow Univ. Phys. Bull., 69, 223–229 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    V. N. Rodionov and G. A. Kravtsova, “An algebraic PT -symmetric quantum theory with a maximal mass,” PEPAN, 47, 135–156 (2016).Google Scholar
  9. 9.
    V. N. Rodionov and G. A. Kravtsova, “Developing a non-Hermitian algebraic theory with the γ5-extension of mass,” Theor. Math. Phys., 182, 100–113 (2015).CrossRefzbMATHGoogle Scholar
  10. 10.
    V. N. Rodionov, “Exotic fermions in Kadyshevsky’s theory and the possibility to detect them,”, 48, 319–331 (2017).Google Scholar
  11. 11.
    C. M. Bender, H. F. Jones, and R. J. Rivers, “Dual PT -symmetric quantum field theories,” Phys. Lett. B, 625, 333–340 (2005); arXiv:hep-th/0508105v1 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Alexandre, C. M. Bender, and P. Millington, “Light neutrino masses from a non-Hermitian Yukawa theory,” J. Phys.: Conf. Ser., 873, 012047 (2017); arXiv:1703.05251v1 [hep-th] (2017).Google Scholar
  13. 13.
    A. Mostafazadeh, “Scattering theory and PT -symmetry,” in: Parity-Time Symmetry and Its Applications (D. Christodoulides and J. Yang, eds.), Springer, Singapore (2018), pp. 75–121; arXiv:1711.05450v2 [quant-ph] (2017).Google Scholar
  14. 14.
    P. A. M. Dirac, “Recollections of an exciting era,” in: History of Twentieth Century Physics (Proc. Intl. School of Physics “Enrico Fermi,” Course 57, Varenna, Lake Como, Italy, 31 July–12 August 1972, C. Weiner, ed.), Acad. Press, New York (1977), pp. 109–146.Google Scholar
  15. 15.
    P. A. M. Dirac, “The relativistic electron wave equation,” Preprint KFKI-1977-62, Hung. Acad. of Sci., Central Res. Inst. for Phys., Budapest (1977).Google Scholar
  16. 16.
    V. G. Kadyshevsky, “Fundamental length hypothesis and new concept of gauge vector field,” Nucl. Phys. B, 141, 477–496 (1978); Pub. 78/22-THY, Fermilab, Batavia, Ill. (1978); “Toward a more profound theory of electromagnetic interactions,” Pub. 78/070-THY, Fermilab, Batavia, Ill. (1978).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    V. G. Kadyshevsky, M. D. Mateev, V. N. Rodionov, and A. S. Sorin, “Towards a maximal mass model,” arXiv:0708.4205v1 [hep-ph] (2007).Google Scholar
  18. 18.
    M. A. Markov, “Maximon-type scenario of the Universe (Big Bang, Small Bang, Micro Bang),” Preprint INR P-0207, Inst. Nucl. Res., Moscow (1981).Google Scholar
  19. 19.
    M. G. Aartsen et al. [IceCube Collaboration], “The IceCube Neutrino Observatory–contributions to ICRC 2015 Part IV: Searches for dark matter and exotic particles,” arXiv:1510.05226v2 [astro-ph.HE] (2015).Google Scholar
  20. 20.
    D. Lai, “Physics in very strong magnetic fields,” Space Sci. Rev., 191, 13–25 (2015); arXiv:1411.7995v1 [astroph. HE] (2014).ADSCrossRefGoogle Scholar
  21. 21.
    V. N. Rodionov, “Non-Hermitian PT -symmetric Dirac–Pauli Hamiltonians with real energy eigenvalues in the magnetic field,” Internat. J. Theor. Phys., 54, 3907–3919 (2015).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    V. N. Rodionov, “Exact solutions for non-Hermitian Dirac–Pauli equation in an intensive magnetic field,” Phys. Scr., 90, 045302 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    N. Arkani-Hamed, R. T. D’Agnolo, M. Low, and D. Pinner, “Unification and new particles at the LHC,” JHEP, 1611, 82 (2016); arXiv:1608.01675v1 [hep-ph] (2016).ADSCrossRefGoogle Scholar
  24. 24.
    V. N. Rodionov, “Towards the detecting of pseudo-Hermitian anomalies for negative square masses neutrinos in intensive magnetic fields,” arXiv:1603.08425v1 [physics.gen-ph] (2016).Google Scholar
  25. 25.
    A. Battye and A. Moss, “Evidence for massive neutrinos from cosmic microwave background and lensing observations,” Phys. Rev. Lett., 112, 051303 (2014); arXiv:1308.5870v2 [astro-ph.CO] (2013).ADSCrossRefGoogle Scholar
  26. 26.
    V. N. Rodionov, “Scalar and spinor particles with low binding energy in a strong stationary magnetic field in two and three dimensions,” Phys. Rev. A, 75, 062111 (2007); arXiv:hep-ph/0702228v1 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    V. N. Aseev, A. I. Belesev; A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Likhovid, V. M. Lobashev, A. A. Nozik, V. S. Pantuev, V. I. Parfenov, A. K. Skasyrskaya, F. V. Tkachov, and S. V. Zadorozhny, “Upper limit on the electron antineutrino mass from the Troitsk experiment,” Phys. Rev. D, 84, 112003 (2011); arXiv:1108.5034v3 [hep-ex] (2011).ADSCrossRefGoogle Scholar
  28. 28.
    I. P. Volobuev, V. G. Kadyshevskii, M. D. Mateev, and R. M. Mir-Kassimov, “Equations of motion for scalar and spinor fields in a four-dimensional non-euclidean momentum space,” Theor. Math. Phys., 40, 800–807 (1979).MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Schwinger, “On the Green’s functions of quantized fields: I, II,” Proc. Nat. Acad. Sci. USA, 37, 452–455, 455–459 (1951).CrossRefzbMATHGoogle Scholar
  30. 30.
    J. Alexandre, C. M. Bender, and P. Millington, “Non-Hermitian extension of gauge theories and implications for neutrino physics,” JHEP, 1511, 111 (2015); arXiv:1509.01203v2 [hep-th] (2015).ADSCrossRefGoogle Scholar
  31. 31.
    V. B. Berestetskii, E. M. Lifsitz, and L. P. Pitaevskii, Course of Theoretical Physics [in Russian], Vol. 4, Quantum Elecrodynamics, Nauka, Moscow (1980); English transl., Pergamon, Oxford (1982).Google Scholar
  32. 32.
    V. N. Rodionov and A. M. Mandel, “An upper limit on fermion mass spectrum in non-Hermitian models and its implications for studying of dark matter,” arXiv:1708.08394v1 [hep-ph] (2017).Google Scholar
  33. 33.
    M. Tanabashi et al. [Particle Data Group], “Review of particle physics,” Phys. Rev. D, 98, 030001 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. N. Rodionov
    • 1
    Email author
  • A. M. Mandel
    • 2
  • G. A. Kravtsova
    • 3
  1. 1.Plekhanov Russian University of EconomicsMoscowRussia
  2. 2.State University STANKINMoscowRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations