Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 3, pp 392–411 | Cite as

Time Evolution of Quadratic Quantum Systems: Evolution Operators, Propagators, and Invariants

  • Sh. M. NagiyevEmail author
  • A. I. Ahmadov
Article
  • 7 Downloads

Abstract

We use the evolution operator method to describe time-dependent quadratic quantum systems in the framework of nonrelativistic quantum mechanics. For simplicity, we consider a free particle with a variable mass M(t), a particle with a variable mass M(t) in an alternating homogeneous field, and a harmonic oscillator with a variable mass M(t) and frequency ω(t) subject to a variable force F(t). To construct the evolution operators for these systems in an explicit disentangled form, we use a simple technique to find the general solution of a certain class of differential and finite-difference nonstationary Schrödinger-type equations of motion and also the operator identities of the Baker–Campbell–Hausdorff type. With known evolution operators, we can easily find the most general form of the propagators, invariants of any order, and wave functions and establish a unitary relation between systems. Results known in the literature follow from the obtained general results as particular cases.

Keywords

nonstationary quadratic system evolution operator propagator invariant unitary relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-Relativistic Theory, Nauka, Moscow (1989); English transl. prev. ed., Pergamon, Oxford (1977).Google Scholar
  2. 2.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).zbMATHGoogle Scholar
  3. 3.
    K. Husimi, “Miscellanea in elementary quantum mechanics. II,” Prog. Theor. Phys., 9, 381–402 (1953).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys., 10, 1458–1473 (1969).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Camiz, A. Gerardi, C. Marchioro, E. Presutti, and E. Scacciatelli, “Exact solution of a time-dependent quantum harmonic oscillator with a singular perturbation,” J. Math. Phys., 12, 2040–2043 (1971).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    K. B. Wolf, “On time-dependent quadratic quantum Hamiltonians,” SIAM J. Appl. Math., 40, 419–431 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    I. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  8. 8.
    V. V. Dodonov, V. I. Manko, and O. V. Shakhmistova, “Wigner functions of particle in a time-dependent uniform field,” Phys. Lett. A, 102, 295–297 (1984).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Cordero-Soto and S. K. Suslov, “Time reversal for modified oscillators,” Theor. Math. Phys., 162, 286–316 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    R. Cordero-Soto, E. Suazo, and S. K. Suslov, “Quantum integrals of motion for variable quadratic Hamiltonians,” Ann. Phys., 325, 1884–1912 (2010); arXiv:0912.4900v9 [math-ph] (2009).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    D.-Y. Song, “Unitary relations in time-dependent harmonic oscillators,” J. Phys. A: Math. Gen., 32, 3449–3456 (1999); arXiv:quant-ph/9812038v2 (1998).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. P. Kim, “A class of exactly solved time-dependent quantum oscillators,” J. Phys. A: Math. Gen., 27, 3927–3936 (1994).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J.-Y. Ji, J. K. Kim, and S. P. Kim, “Heisenberg-picture approach to the exact quantum motion of a timedependent harmonic oscillator,” Phys. Rev. A, 51, 4268–4271 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    I. A. Pedrosa, “Exact wave functions of a harmonic oscillator with time-dependent mass and frequency,” Phys. Rev. A, 55, 3219–3221 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys., 47, 264–267 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    I. Guedes, “Solution of the Schrödinger equation for the time-dependent linear potential,” Phys. Rev. A, 63, 034102 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    M. Feng, “Complete solution of the Schrödinger equation for the time-dependent linear potential,” Phys. Rev. A, 64, 034101 (2002); arXiv:quant-ph/0105145v1 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    Sh. M. Nagiyev and K. Sh. Jafarova, “Relativistic quantum particle in a time-dependent homogeneous field,” Phys. Lett. A, 377, 747–752 (2013).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Sh. M. Nagiyev, “Reexamination of a time-dependent harmonic oscillator,” Azerb. J. Phys. Fizika, 22, 16–23 (2016).Google Scholar
  20. 20.
    Sh. M. Nagiyev, “Wigner function of a relativistic particle in a time-dependent linear potential,” Theor. Math. Phys., 188, 1030–1037 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. M. Perelomov and V. S. Popov, “Method of generating functions for a quantum oscillator,” Theor. Math. Phys., 3, 582–592 (1970).CrossRefGoogle Scholar
  22. 22.
    F. J. Dyson, “The S matrix in quantum electrodynamics,” Phys. Rev., 75, 1736–1755 (1949).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sh. M. Nagiyev, “Using the evolution operator method to describe a particle in a homogeneous alternating field,” Theor. Math. Phys., 194, 313–327 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    K. V. Zhukovsky, “Solving evolutionary-type differential equations and physical problems using the operator method,” Theor. Math. Phys., 190, 52–68 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    K. V. Zhukovsky and G. Dattoli, “Evolution of non-spreading Airy wavepackets in time dependent linear potentials,” Appl. Math. Comput., 217, 7966–7974 (2017).MathSciNetzbMATHGoogle Scholar
  26. 26.
    Sh. M. Nagiyev, “Motion in an alternating quasihomogeneous field and operator identities [in Russian],” Azerb. J. Phys. Fizika, 19, 129–135 (2013).Google Scholar
  27. 27.
    A. L. Rivera, N. M. Atakhishiyev, S. M. Chumakov, and K. B. Wolf, “Evolution under polynomial Hamiltonians in quantum and optical phase spaces,” Phys. Rev. A, 55, 876–889 (1997).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    H. Dekker, “Classical and quantum mechanics of the damped harmonic oscillator,” Phys. Rep., 80, 1–110 (1981).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    V. S. Popov, “Feynman disentangling of noncommuting operators in quantum mechanics,” JETP, 101, 817–829 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    V. V. Dodonov and V. I. Man’ko, “Invariants and evolution of nonstationary quantum systems [in Russian],” Trudy FIAN, 183, 71–181 (1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of PhysicsAzerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Baku State UniversityInstitute of Physical ProblemsBakuAzerbaijan

Personalised recommendations