Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 3, pp 376–391 | Cite as

Charge Transfer on a Two-Dimensional Lattice with Tamm States

  • V. N. LikhachevEmail author
  • G. A. Vinogradov
Article
  • 3 Downloads

Abstract

We consider the quantum dynamics of charge propagation over a two-dimensional lattice with impurity sites at the lattice edges. These sites simulate boundary (Tamm) states. We solve the nonstationary problem of the evolution of a quantum excitation over impurity sites at the lattice perimeter in the tightbinding approximation. We obtain the solution as an expansion in eigenfunctions of the unperturbed system Hamiltonian. We obtain analytically accurate results for the propagation of the wave function over impurity sites.

Keywords

Tamm state charge transfer quantum dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. E. Tamm, “Ü ber eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. Sowjetunion, 1, 733–746 (1932).zbMATHGoogle Scholar
  2. 2.
    S. G. Davison and J. D. Lewine, Surface States (Solid State Physics, Vol. 25, H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), Acad. Press, New York (1970).Google Scholar
  3. 3.
    I. M. Lifshits and S. I. Pekar, “Tamm bound states of electrons on the crystal surface and surface oscillations of lattice atoms [in Russian],” Usp. Fiz. Nauk, 56, 531–568 (1955).CrossRefGoogle Scholar
  4. 4.
    T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett., 101, 113902 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    T. Goto, A. V. Baryshev, M. Inoue, A. V. Dorofeenko, A. M. Merzlikin, A. P. Vinogradov, A. A. Lisyansky, and A. B. Granovsky, “Tailoring surfaces of one-dimensional magnetophotonic crystals: Optical Tamm state and Faraday rotation,” Phys. Rev. B, 79, 125103 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A, 88, 023832 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    C. R. Rosberg, D. N. Neshev, W. Krolikowski, A. Mitchell, R. A. Vicencio, M. I. Molina, and Yu. S. Kivshar, “Observation of surface gap solitons in semi-infinite waveguide arrays,” Phys. Rev. Lett., 97, 083901 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    E. Smirnov, M. Stepić, C. E. Rüter, D. Kip, and V. Shandarov, “Observation of staggered surface solitary waves in one-dimensional waveguide arrays,” Optics Lett., 31, 2338–2340 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    M. Koch, F. Ample, Ch. Joachim, and L. Grill, “Voltage-dependent conductance of a single graphene nanoribbon,” Nature Nanotechnology, 7, 713–717 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    H. K. Sy and T. C. Chua, “Internal Tamm states in finite and infinite superlattices,” Phys. Rev. B, 48, 7930–7934 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Savin and Yu. S. Kivshar, “Vibrational Tamm states at the edges of graphene nanoribbons,” Phys. Rev. B, 81, 165418 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    I. V. Stankevich and L. A. Chernozatonskii, “Tamm states of carbon nanotubes,” JETP Lett., 63, 621–627 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    K. Kobayashi, “Calculation of ballistic conductance through Tamm surface states,” Phys. Rev. B, 65, 035419 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical Physics, RASMoscowRussia

Personalised recommendations