Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 3, pp 317–330 | Cite as

Whitham Hierarchy and Generalized Picard–Fuchs Operators in the N=2 Susy Yang–Mills Theory for Classical Gauge Groups

  • Jialiang DaiEmail author
  • Engui Fan
Article
  • 11 Downloads

Abstract

We derive infinitely many meromorphic differentials based on the fractional powers of the superpotential arising from hyperelliptic curves. We obtain various differential equations expressed in terms of the moduli derivatives of the Seiberg–Witten differential. Taking advantage of the cross derivatives of these differentials, we can derive some Picard–Fuchs equations and use the Euler operator to obtain a complete set of Picard–Fuchs equations containing the instanton correction term. We solve the complete system of equations by expanding the moduli parameters in power series.

Keywords

Whitham hierarchy Picard–Fuchs equation instanton correction renormalization group parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang–Mills theory,” Nucl. Phys. B, 426, 19–52 (1994); arXiv:hep-th/9407087v1 (1994).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    K. Ito and N. Sasakura, “Exact and microscopic one-instanton calculations in N=2 supersymmetric Yang–Mills theories,” Nucl. Phys. B, 484, 141–166 (1997); arXiv:hep-th/9608054v1 (1996).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. D’Hoker, I. M. Krichever, and D. H. Phong, “The effective prepotential of N=2 supersymmetric SU(Nc) gauge theories,” Nucl. Phys. B, 489, 179–210 (1997); arXiv:hep-th/9609041v1 (1996).ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    E. D’Hoker, I.M. Krichever, and D. H. Phong, “The effective prepotential of N=2 supersymmetric SO(Nc) and Sp(Nc) gauge theories,” Nucl. Phys. B, 489, 211–222 (1997); arXiv:hep-th/9609145v1 (1996).ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Klemm, W. Lerche, and S. Theisen, “Nonperturbative effective actions of N=2-supersymmetric gauge theories,” Internat. J. Modern Phys. A, 11, 1929–1973 (1996); arXiv:hep-th/9505150v1 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. M. Isidro, A. Mukherjee, J. P. Nunes, and H. J. Schnitzer, “On the Picard–Fuchs equations for massive N=2 Seiberg–Witten theories,” Nucl. Phys. B, 502, 363–382 (1997); arXiv:hep-th/9704174v1 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. M. Isidro, A. Mukherjee, J. P. Nunes, and H. J. Schnitzer, “A new derivation of the Picard–Fuchs equations for effective N=2 super Yang–Mills theories,” Nucl. Phys. B, 492, 647–681 (1997); arXiv:hep-th/9609116v2 (1996).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Alishahiha, “On the Picard–Fuchs equations of the SW models,” Phys. Lett. B, 398, 100–103 (1997); arXiv:hep-th/9609157v2 (1996).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. M. Isidro, “Integrability, Seiberg–Witten models, and Picard–Fuchs equations,” JHEP, 0101, 043 (2001); arXiv:hep-th/0011253v2 (2000).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Ito and S.-K. Yang, “Picard–Fuchs equations and prepotentials in N=2 supersymmetric QCD,” in: Frontiers in Quantum Field Theory (Osaka, Japan, 14–17December 1995, H. Itoyama, M. Kaku, H. Kunitomo, M. Nimomiya, and H. Shirohura, eds.), World Scientific, Singapore (1996), pp. 331–342; arXiv:hep-th/9603073v1 (1996).Google Scholar
  11. 11.
    K. Ito, “Picard–Fuchs equations and prepotential in N=2 supersymmetric G2Yang–Mills theory,” Phys. Lett. B, 406, 54–59 (1997); arXiv:hep-th/9703180v2 (1997).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Nakatsu and K. Takasaki, “Whitham–Toda hierarchy and N=2 supersymmetric Yang–Mills theory,” Modern Phys. Lett. A, 11, 157–168 (1996); arXiv:hep-th/9509162v1 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    E. D’Hoker and D. H. Phong, “Seiberg–Witten theory and integrable systems,” in: Integrability: The Seiberg–Witten and Whitham Equations (Edinburgh, 14–18September 1998, H. W. Braden and I. M. Krichever, eds.), Gordon and Breach, Amsterdam (2000), pp. 43–68; arXiv:hep-th/9903068v1 (1999).Google Scholar
  14. 14.
    A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Scientific, Singapore (1999).CrossRefzbMATHGoogle Scholar
  15. 15.
    K. Takasaki, “Whitham deformations of Seiberg–Witten curves for classical gauge groups,” Internat. J. Modern Phys. A, 15, 3635–3666 (2000); arXiv:hep-th/9901120v2 (1999).ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    K. Takasaki, “Whitham deformations and tau function in N=2 supersymmetric gauge theories,” Prog. Theor. Phys. Suppl., 135, 53–74 (1999); arXiv:hep-th/9905224v2 (1999).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    L. Chekhov and A. Mironov, “Matrix models vs. Seiberg–Witten/Whitham theories,” Phys. Lett. B, 552, 293–302 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. Marshakov and N. Nekrasov, “Extended Seiberg–Witten theory and integrable hierarchy,” JHEP, 0701, 104 (2007); arXiv::hep-th/0612019v2 (2006).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Gorsky and A. Milekhin, “RG–Whitham dynamics and complex Hamiltonian systems,” Nucl. Phys. B, 895, 33–63 (2015); arXiv:1408.0425v3 [hep-th] (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Gorsky, A. Marshakov, A. Mironov, and A. Morozov, “RG equations from Whitham hierarchy,” Nucl. Phys. B, 527, 690–716 (1998); arXiv:hep-th/9802007v2 (1998).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Y. Ohta, “Picard–Fuchs equation and Whitham hierarchy in N=2 supersymmetric SU(r+1) Yang–Mills theories,” J. Math. Phys., 40, 6292–6301 (1999); arXiv:hep-th/9906207v3 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    H. Itoyama and A. Morozov, “Integrability and Seiberg–Witten theory: Curves and periods,” Nucl. Phys. B, 477, 855–877 (1996); arXiv:hep-th/9511126v2 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. D. Edelstein and J. Mas, “N=2 supersymmetric Yang–Mills theories and Whitham integrable hierarchies,” AIP Conf. Proc., 484, 195–212 (2008); arXiv:hep-th/9902161v1 (1999).ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.School of Mathematical ScienceFudan UniversityShanghaiChina

Personalised recommendations