Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 2, pp 296–315 | Cite as

Exact Results for the Isotropic Spin-1/2 Heisenberg Chain With Dissipative Boundary Driving

  • V. Yu. PopkovEmail author
  • D. Karevski
  • G. M. Schütz
Article
  • 6 Downloads

Abstract

We consider the open isotropic spin-1/2 Heisenberg quantum spin chain with a finite number N of sites coupled at the ends to a dissipative environment that favors polarization of the boundary spins in different directions. We review the matrix product ansatz (MPA) that yields the exact reduced density matrix of the Heisenberg chain. We develop the matrix algebra coming from the MPA in more detail than in previous work. We hence obtain exact results for the nonequilibrium partition function, about the impact of quantum fluctuations on the targeted boundary states, and for current–magnetization correlations in the steady state. The boundary states turn out to be pure to the order o(N−2). We show that the local magnetization and the local current perpendicular to the plane spanned by the boundary polarizations exhibit long-range correlations while the local magnetization correlations with the local in-plane currents are strongly suppressed.

Keywords

nonequilibrium steady state Heisenberg spin chain driven system exact result 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Karevski, V. Popkov, and G. M. Schütz, “Exact matrix product solution for the boundary–driven Lindblad XXZ chain,” Phys. Rev. Lett., 110, 047201 (2013); arXiv:1211.7010v1 [cond–mat.stat–mech] (2012).ADSCrossRefGoogle Scholar
  2. 2.
    D. Karevski, V. Popkov, and G. M. Schütz, “Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: Exact results,” Phys. Rev. E, 88, 062118 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    T. Prosen, “Open XXZ spin chain: Nonequilibrium steady state and a strict bound on ballistic transport,” Phys. Rev. Lett., 106, 217206 (2011); arXiv:1103.1350v3 [cond–mat.str–el] (2011).ADSCrossRefGoogle Scholar
  4. 4.
    T. Prosen, “Exact nonequilibrium steady state of a strongly driven open XXZ chain,” Phys. Rev. Lett., 107, 137201 (2011); arXiv:1106.2978v2 [quant–ph] (2011).ADSCrossRefGoogle Scholar
  5. 5.
    B. Buča and T. Prosen, “Connected correlations, fluctuations, and current of magnetization in the steady state of boundary driven XXZ spin chains,” J. Stat. Mech., 2016, 023102 (2106).Google Scholar
  6. 6.
    T. Prosen, “Matrix product solutions of boundary driven quantum chains,” J. Phys. A: Math. Theor., 48, 373001 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio, and C. Landim, “Macroscopic fluctuation theory,” Rev. Modern Phys., 87, 593–636 (2015); arXiv:1404.6466v2 [cond–mat.stat–mech] (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Spohn, “Long range correlations for stochastic lattice gases in a non–equilibrium steady state,” J. Phys. A: Math. Gen., 16, 4275–4291 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    V. Popkov and T. Prosen, “Infinitely dimensional Lax structure for one–dimensional Hubbard model,” Phys. Rev. Lett., 114, 127201 (2015); arXiv:1501.02230v2 [math–ph] (2015).ADSCrossRefGoogle Scholar
  10. 10.
    L. D. Faddeev, “The inverse problem in the quantum theory of scattering,” J. Math. Phys., 4, 72–104 (1963).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    L. A. Takhtadzhyan and L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg XY Z model,” Russian Math. Surveys, 34, 11–68 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    D. Karevski, V. Popkov, and G. M. Schütz, “Matrix product ansatz for non–equilibrium quantum steady states.,” in: From Particle Systems to Partial Differential Equations (PSPDE 2015) (Springer Proc. Math. Stat., Vol. 209, P. Gonc. alves and A. Soares, eds.), Springer, Cham (2017), pp. 221–245.CrossRefGoogle Scholar
  13. 13.
    F. C. Alcaraz, S. Dasmahapatra, and V. Rittenberg, “Stochastic models with boundaries and quadratic algebras,” Phys. A, 257, 1–9 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R. A. Blythe and M. R. Evans, “Nonequilibrium steady states of matrix–product form: A solver’s guide,” J. Phys. A: Math. Theor., 40, R333–R441 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    B. Derrida, “An exactly soluble non–equilibrium system: The asymmetric simple exclusion process,” Phys. Rep., 301, 65–83 (1998).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Attal, A. Joye, and C.–A. Pillet, eds., Open Quantum Systems II: The Markovian Approach (Lect. Notes Math., Vol. 1881), Springer, Berlin (2006).CrossRefzbMATHGoogle Scholar
  17. 17.
    H.–P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford (2002).zbMATHGoogle Scholar
  18. 18.
    A. Kossakowski, “On quantum statistical mechanics of non–Hamiltonian systems,” Rep. Math. Phys., 3, 247–274 (1972).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys., 48, 119–130 (1976).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, London (1982).zbMATHGoogle Scholar
  21. 21.
    W. Heisenberg, “Zur Theorie des Ferromagnetismus,” Z. Phys., 49, 619–636 (1928).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    V. Popkov and G. M. Schütz, “Solution of the Lindblad equation for spin helix states,” Phys. Rev. E, 95, 042128 (2017).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    V. Popkov, “Alternation of sign of magnetization current in driven XXZ chains with twisted XY boundary gradients,” J. Stat. Mech., 2012, P12015 (2012).MathSciNetCrossRefGoogle Scholar
  24. 24.
    V. Popkov and R. Livi, “Manipulating energy and spin currents in non–equilibrium systems of interacting qubits,” New J. Phys., 15, 023030 (2013).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Helmholtz Institute for Radiation and Nuclear PhysicsUniversity of BonnBonnGermany
  2. 2.Institute of Theoretical PhysicsUniversity of CologneCologneGermany
  3. 3.Laboratoire de Physique et Chimie Théoriques, Université de Lorraine, CNRSVandoeuvre les Nancy CedexLondonFrance
  4. 4.Institute of Complex Systems IIForschungszentrum JülichJülichGermany

Personalised recommendations