Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 2, pp 197–214 | Cite as

Strict Versions of Integrable Hierarchies in Pseudodifference Operators and the Related Cauchy Problems

  • G. F. HelminckEmail author
  • V. A. Poberezhny
  • S. V. Polenkova
Article
  • 5 Downloads

Abstract

In the algebra PsΔ of pseudodifference operators, we consider two deformations of the Lie subalgebra spanned by positive powers of an invertible constant first-degree pseudodifference operator Λ0. The first deformation is by the group in PsΔ corresponding to the Lie subalgebra Ps<0 of elements of negative degree, and the second is by the group corresponding to the Lie subalgebra PsΔ≤0 of elements of degree zero or lower. We require that the evolution equations of both deformations be certain compatible Lax equations that are determined by choosing a Lie subalgebra depending on Λ0 that respectively complements the Lie subalgebra PsΔ<0 or PsΔ≤0. This yields two integrable hierarchies associated with Λ0, where the hierarchy of the wider deformation is called the strict version of the first because of the form of the Lax equations. For Λ0 equal to the matrix of the shift operator, the hierarchy corresponding to the simplest deformation is called the discrete KP hierarchy. We show that the two hierarchies have an equivalent zero-curvature form and conclude by discussing the solvability of the related Cauchy problems.

Keywords

pseudodifference operator Lax equation zero-curvature form Cauchy problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, “Transformation groups for soliton equations,” in: Nonlinear Integrable Systems–Classical Theory and Quantum Theory (M. Jimbo and T. Miwa, eds.), World Scientific, Singapore (1983), pp. 41–119.zbMATHGoogle Scholar
  2. 2.
    G. Segal and G. Wilson, “Loop groups and equations of KdV type,” Inst. Hautes Étud. Sci. Publ. Math., 61, 5–65 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. G. Helminck, G. F. Helminck, and E. A. Panasenko, “Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective,” Theor. Math. Phys., 174, 134–153 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Toda, Nonlinear Waves and Solitons (Math. Its Appl. Japanese Ser., Vol. 5), Kluwer, Dordrecht (1989).zbMATHGoogle Scholar
  5. 5.
    K. Ueno and K. Takasaki, “Toda lattice hierarchy,” in: Group Representations and Systems of Differential Equations (Adv. Stud. Pure Math., Vol. 4, K. Okamoto, ed.), North–Holland, Amsterdam (1984), pp. 1–95.Google Scholar
  6. 6.
    T. Takebe, “Toda lattice hierarchy and conservation laws,” Commun. Math. Phys., 129, 281–318 (1990).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Adler and P. van Moerbeke, “Group factorization, moment matrices, and Toda lattices,” Internat. Math. Res. Notices, 1997, No. 12, 555–572 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    L. Haine and P. Iliev, “Commutative rings of difference operators and an adelic flag manifold,” Internat. Math. Res. Notices, 2000, No. 6, 281–323 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D. Olive and N. Turok, “Algebraic structure of Toda systems,” Nucl. Phys. B, 220, 491–507 (1983).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Olive and N. Turok, “Local conserved densities and zero–curvature conditions for Toda lattice field theories,” Nucl. Phys. B, 257, 277–301 (1985).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Olive and N. Turok, “The Toda lattice field theory hierarchies and zero–curvature conditions in Kac–Moody algebras,” Nucl. Phys. B, 265, 469–484 (1986).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Adler, P. van Moerbeke, and P. Vanhaecke, Algebraic Integrability, Painlevé Geometry, and Lie Algebras (Ergeb. Math. Grenzgeb., Vol.47), Springer, Berlin.Google Scholar
  13. 13.
    M. Adler and P. van Moerbeke, “Vertex operator solutions to the discrete KP–hierarchy,” Commun. Math. Phys., 203, 185–210 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    L. A. Dickey, Soliton Equations and Hamiltonian Systems (Adv. Ser. Math. Phys., Vol. 26), World Scientific, Singapore (2003).CrossRefzbMATHGoogle Scholar
  15. 15.
    G. Wilson, “Commuting flows and conservation laws for Lax equations,” Math. Proc. Cambridge Philos. Soc., 86, 131–143 (1979).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Adler, E. Horozov, and P. van Moerbeke, “The solution to the q–KdV equation,” Phys. Lett. A, 242, 139–151 (1998).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    R. R. Gontsov, V. A. Poberezhnyi, and G. F. Helminck, “On deformations of linear differential systems,” Russian Math. Surveys, 66, 63–105 (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G. F. Helminck and J. W. van de Leur, “Darboux transformations for the KP hierarchy in the Segal–Wilson setting,” Canad. J. Math., 53, 278–309 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    G. F. Helminck, V. A. Poberezhny, and S. V. Polenkova, “A geometric construction of solutions of the strict dKP(Λ0) hierarchy,” J. Geom. Phys., 131, 189–203 (2018).ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. F. Helminck
    • 1
    Email author
  • V. A. Poberezhny
    • 2
    • 3
  • S. V. Polenkova
    • 4
  1. 1.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia
  4. 4.University of TwenteEnschedeThe Netherlands

Personalised recommendations