Theoretical and Mathematical Physics

, Volume 198, Issue 1, pp 100–117 | Cite as

Diagram Technique for the Heat Kernel of the Covariant Laplace Operator

  • A. V. IvanovEmail author


We present a diagram technique used to calculate the Seeley–DeWitt coefficients for a covariant Laplace operator. We use the combinatorial properties of the coefficients to construct a matrix formalism and derive a formula for an arbitrary coefficient.


heat kernel Seeley–DeWitt coefficient gauge connection diagram technique operator determinant covariant Laplace operator Yang–Mills theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Fock, “Die eigenzeit in der klassichen und in der quantenmechanick,” Phys. Z. Sowetunion, 12, 404–425 (1937).zbMATHGoogle Scholar
  2. 2.
    J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev., 82, 664–679 (1951).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    B. S. DeWitt, “Quantum theory of gravity: I. The canonical theory,” Phys. Rev., 160, 1113–1148 (1967)ADSCrossRefzbMATHGoogle Scholar
  4. 3a.
    “Quantum theory of gravity: II. The manifestly covariant theory,”, 162, 1195–1239 (1967)Google Scholar
  5. 3b.
    “Quantum theory of gravity: III. Applications of the covariant theory,” Phys. Rev., 162, 1239–1256 (1967).Google Scholar
  6. 4.
    B. Iochum, C. Levy, and D. Vassilevich, “Spectral action beyond the weak-field approximation,” Commun. Math. Phys., 316, 595–613 (2012); arXiv:1108.3749v2 [hep-th] (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 5.
    I. Jack and H. Osborn, “Two-loop background field calculations for arbitrary background fields,” Nucl. Phys. B, 207, 474–504 (1982).ADSCrossRefGoogle Scholar
  8. 6.
    J. P. Bornsen and A. E. M. van de Ven, “Three-loop Yang–Mills β-function via the covariant background field method,” Nucl. Phys. B, 657, 257–303 (2003); arXiv:hep-th/0211246v3 (2002).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 7.
    H. P. McKean and I. M. Singer, “Curvature and the eigenvalues of the Laplacian,” J. Differential Geom., 1, 43–69 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 8.
    P. Gilkey, “The spectral geometry of a Riemannian manifold,” J. Differential Geom., 10, 601–618 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 9.
    P. Amsterdamski, A. L. Berkin, and D. J. O’Connor, “b8 ‘Hamidew’ coefficient for a scalar field,” Class. Q. Grav., 6, 1981–1991 (1989).ADSCrossRefzbMATHGoogle Scholar
  12. 10.
    I. G. Avramidi, “The covariant technique for the calculation of the heat kernel asymptotic expansion,” Phys. Lett. B, 238, 92–97 (1990); “A covariant technique for the calculation of the one-loop effective action,” Nucl. Phys. B, 355, 712–754 (1991).ADSMathSciNetCrossRefGoogle Scholar
  13. 11.
    A. E. M. van de Ven, “Index-free heat kernel coefficients,” Class. Q. Grav., 15, 2311–2344 (1998); arXiv:hep-th/9708152v1 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 12.
    D. V. Vassilevich, “Heat kernel expansion: User’s manual,” Phys. Rep., 388, 279–360 (2003); arXiv:hep-th/0306138v3 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 13.
    A. V. Ivanov, “About renormalization of the Yang–Mills theory and the approach to calculation of the heat kernel,” EPJ Web Conf., 158, 07004 (2017).CrossRefGoogle Scholar
  16. 14.
    A. O. Barvinsky and G. A. Vilkovisky, “Beyond the Schwinger–DeWitt technique: Converting loops into trees and in–in currents,” Nucl. Phys. B, 282, 163–188 (1987); “Covariant perturbation theory (II): Second order in the curvature. General algorithms,” Nucl. Phys. B, 333, 471–511 (1990); “Covariant perturbation theory (III): Spectral representations of the third-order form factors,” Nucl. Phys. B, 333, 512–524 (1990).ADSMathSciNetCrossRefGoogle Scholar
  17. 15.
    I. G. Avramidi, “Heat kernel on homogeneous bundles over symmetric spaces,” Commun. Math. Phys., 288, 963–1006 (2009); arXiv:math/0701489v1 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 16.
    L. D. Faddeev, “Mass in quantum Yang–Mills theory (comment on a Clay Millennium Problem),” in: Perspectives in Analysis: Essays in Honor of Lenart Carleson’s 75th Birthday (Math. Phys. Stud., Vol. 27, M. Benedicks, P. W. Jones, S. Smirnov, and B. Winckler, eds.), Springer, Berlin (2011), pp. 63–72.Google Scholar
  19. 17.
    S. È. Derkachev, A. V. Ivanov, and L. D. Faddeev, “Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time,” Theor. Math. Phys., 192, 1134–1140 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 18.
    G. M. Shore, “Symmetry restoration and the background field method in gauge theories,” Ann. Phys., 137, 262–305 (1981).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations