Theoretical and Mathematical Physics

, Volume 198, Issue 1, pp 69–88 | Cite as

The q-TASEP with a Random Initial Condition

  • T. ImamuraEmail author
  • T. SasamotoEmail author


A standard approach for studying fluctuations of one-dimensional Kardar–Parisi–Zhang models, which include the ASEP and the q-TASEP, is to write a formula for the q-deformed moments and construct their generating function. This approach works well for an initial condition of the step type but not for a random initial condition (including the stationary case): in this case, only the first few moments are finite and the rest diverge. We previously presented a method for overcoming this difficulty using the Ramanujan summation formula and the Cauchy determinant for the theta functions. Here, we present an alternative approach for the q-TASEP without using these relations.


exclusion process fluctuation q-Whittaker function random matrix theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Corwin, “The Kardar–Parisi–Zhang equation and universality class,” Random Matrices Theory Appl., 1, 1130001 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Quastel and H. Spohn, “The one-dimensional KPZ equation and its universality class,” J. Stat. Phys., 160, 965–984 (2015); arXiv:1503.06185v1 [math-ph] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    T. Sasamoto, “The 1D Kardar–Parisi–Zhang equation: height distribution and universality,” Prog. Theor. Exp. Phys., 2016, 022A01 (2016).Google Scholar
  4. 4.
    A. Borodin and I. Corwin, “Macdonald processes,” Probab. Theory Related Fields, 158, 225–400 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. Sasamoto and M. Wadati, “Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A: Math. Gen., 31, 6057–6071 (1998).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Borodin and L. Petrov, “Lectures on integrable probability: Stochastic vertex models and symmetric functions,” arXiv:1605.01349v1 [math.PR] (2016).Google Scholar
  7. 7.
    I. Corwin and L. Petrov, “The q-PushASEP: A new integrable model for traffic in 1+1 dimension,” J. Stat. Phys., 160, 1005–1026 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. M. Povolotsky, “On the integrability of zero-range chipping models with factorized steady states,” J. Phys. A: Math. Theor., 46, 465205 (2013); arXiv:1308.3250v3 [math-ph] (2013).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    K. Johansson, “Shape fluctuations and random matrices,” Commun. Math. Phys., 209, 437–476 (2000); arXiv: math/9903134v2 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    C. A. Tracy and H. Widom, “Level-spacing distributions and the Airy kernel,” Commun. Math. Phys., 159, 151–174 (1994); arXiv:hep-th/9211141v1 (1992).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. Baik and E. M. Rains, “Limiting distributions for a polynuclear growth model with external sources,” J. Stat. Phys., 100, 523–541 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. L. Ferrari and H. Spohn, “Scaling limit for the space–time covariance of the stationary totally asymmetric simple exclusion process,” Commun. Math. Phys., 265, 1–44 (2006); arXiv:math-ph/0504041v3 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    T. Imamura and T. Sasamoto, “Fluctuations of the one-dimensional polynuclear growth model with external sources,” Nucl. Phys. B, 699, 503–544 (2004).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Borodin, P. L. Ferrari, M. Pr¨ahofer, and T. Sasamoto, “Fluctuation properties of the TASEP with periodic initial configuration,” J. Stat. Phys., 129, 1055–1080 (2007); arXiv:math-ph/0608056v3 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    T. Sasamoto, “Spatial correlations of the 1D KPZ surface on a flat substrate,” J. Phys. A: Math. Theor., 38, L549–L556 (2005); arXiv:cond-mat/0504417v1 (2005).Google Scholar
  16. 16.
    P. L. Ferrari and A. Occelli, “Universality of the GOE Tracy–Widom distribution for TASEP with arbitrary particle density,” Electron. J. Probab., 23, 51 (2018); arXiv:1704.01291v3 [math.PR] (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    K. Matetski, J. Quastel, and D. Remenik, “The KPZ fixed point,” arXiv:1701.00018v2 [math.PR] (2017).Google Scholar
  18. 18.
    P. J. Forrester, Log Gases and Random Matrices (London Math. Soc. Monogr. Series, Vol. 34), Princeton Univ. Press, Princeton, N. J. (2010).zbMATHGoogle Scholar
  19. 19.
    M. L. Mehta, Random Matrices (Pure Appl. Math., Vol. 142), Elsevier, Amsterdam (2004).zbMATHGoogle Scholar
  20. 20.
    A. Borodin, “Stochastic higher spin six vertex model and Madconald measures,” J. Math. Phys., 59, 023301 (2018); arXiv:1608.01553v1 [math-ph] (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. Borodin and G. Olshanski, “The ASEP and determinantal point processes,” Commun. Math. Phys., 353, 853–903 (2017); arXiv:1608.01564v1 [math-ph] (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    T. Imamura and T. Sasamoto, “Determinantal structures in the O’Connell–Yor directed random polymer model,” J. Stat. Phys., 163, 675–713 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. Borodin, I. Corwin, and T. Sasamoto, “From duality to determinants for q-TASEP and ASEP,” Ann. Prob., 42, 2314–2382 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    T. Imamura and T. Sasamoto, “Fluctuations for stationary q-TASEP,” Probab. Theory Related Fields, Online first DOI: 10.1007/s00440-018-0868-3 (Sep. 2018); arXiv:1701.05991v2 [math-ph] (2017).Google Scholar
  25. 25.
    A. Borodin, I. Corwin, and D. Remenik, “Log-gamma polymer free energy fluctuations via a Fredholm determinant identity,” Commun. Math. Phys., 324, 215–232 (2013); arXiv:1206.4573v1 [math.PR] (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Aggarwal, “Current fluctuations of the stationary ASEP and six-vertex model,” Duke Math. J., 167, 269–384 (2018); arXiv:1608.04726v2 [math.PR] (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    T. Imamura, M. Mucciconi, and T. Sasamoto, “Fluctuations for stationary higher spin six vertex model,” (to appear).Google Scholar
  28. 28.
    Y. Kajihara and M. Noumi, “Mutiple elliptic hypergeometric series: An approach from the Cauchy determinant,” Indag. Math., n.s., 14, 395–421 (2003).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsChiba UniversityChibaJapan
  2. 2.Department of PhysicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations