Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 1, pp 48–68 | Cite as

Geometric Solutions of the Strict KP Hierarchy

  • G. F. HelminckEmail author
  • E. A. PanasenkoEmail author
Article
  • 5 Downloads

Abstract

Splitting the algebra Psd of pseudodifferential operators into the Lie subalgebra of all differential operators without a constant term and the Lie subalgebra of all integral operators leads to an integrable hierarchy called the strict KP hierarchy. We consider two Psd modules, a linearization of the strict KP hierarchy and its dual, which play an essential role in constructing solutions geometrically. We characterize special vectors, called wave functions, in these modules; these vectors lead to solutions. We describe a relation between the KP hierarchy and its strict version and present an infinite-dimensional manifold from which these special vectors can be obtained. We show how a solution of the strict KP hierarchy can be constructed for any subspace W in the Segal–Wilson Grassmannian of a Hilbert space and any line ℓ in W. Moreover, we describe the dual wave function geometrically and present a group of commuting flows that leave the found solutions invariant.

Keywords

pseudodifferential operator KP hierarchy strict KP hierarchy (dual) linearization (dual) oscillating function (dual) wave function Grassmannian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. F. Helminck, A. G. Helminck, and E. A. Panasenko, “Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective,” Theor. Math. Phys., 174, 134–153 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. F. Helminck, A. G. Helminck, and E. A. Panasenko, “Cauchy problems related to integrable deformations of pseudo differential operators,” J. Geom. Phys., 85, 196–205 (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. F. Helminck, E. A. Panasenko, and S. V. Polenkova, “Bilinear equations for the strict KP hierarchy,” Theor. Math. Phys., 185, 1803–1815 (2015).CrossRefzbMATHGoogle Scholar
  4. 4.
    G. Segal and G. Wilson, “Loop groups and equations of KdV type,” Publ. Math. Inst. Hautes Études Sci., 61, 5–65 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. A. Dickey, Soliton Equations and Hamiltonian Systems (Adv. Series Math. Phys., Vol. 26), World Scientific, Singapore (2003).CrossRefzbMATHGoogle Scholar
  6. 6.
    E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, “Transformation groups for soliton equations,” in: Nonlinear Integrable Systems: Classical Theory and Quantum Theory (Kyoto, Japan, 13–16 May 1981, M. Jimbo and T. Miwa, eds.), World Scientific, Singapore (1983), pp. 39–119.Google Scholar
  7. 7.
    V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).CrossRefzbMATHGoogle Scholar
  8. 8.
    W. Oevel and W. Schief, “Darboux theorems and the KP hierarchy,” in: Applications of Analytic and Geometric Methods in Differential Equations (NATO ASI Ser. C: Math. Phys. Sci., Vol. 413, P. A. Clarkson, ed.), Springer, Dordrecht (1993), pp. 193–206.Google Scholar
  9. 9.
    A. Pressley and G. Segal, Loop Groups, Oxford Univ. Press, Oxford (1988).zbMATHGoogle Scholar
  10. 10.
    N. H. Kuiper, “On the general linear group in Hilbert space,” Math. Centrum Amsterdam Afd. Zuivere Wisk., 1964, ZW-011 (1964).Google Scholar
  11. 11.
    M. F. Atiyah, K-theory, Benjamin, New York (1967).zbMATHGoogle Scholar
  12. 12.
    G. D. Birkhoff, “Singular points of ordinary differential equations,” Trans. AMS, 10, 436–470 (1909).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    G. D. Birkhoff, “Equivalent singular points of ordinary linear differential equations,” Math. Ann., 74, 134–139 (1913).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Grothendieck, “Sur la classification des fibrés holomorphes sur la sphère de Riemann,” Amer. J. Math., 79, 121–138 (1957).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Korteweg–de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Derzhavin State UniversityTambovRussia

Personalised recommendations