Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1856–1864 | Cite as

Projective Synchronization of Piecewise Nonlinear Chaotic Maps

  • S. AhadpourEmail author
  • A. Nemati
  • F. Mirmasoudi
  • N. Hematpour


With wide applications in secure data transmission and encryption, synchronization of chaotic systems is an interesting concept and has accordingly received special attention among nonlinear systems. Here, we propose an appropriate controller for synchronizing one-parameter families of piecewise nonlinear chaotic maps using a projective synchronization method. First, we present synchronization in coupled chaos discrete-time systems using the master–slave method. Using the principle of the stability of the Lyapunov function, we design a proper controller for achieving projective synchronization of piecewise nonlinear systems. Finally, we demonstrate the applicability of the proposed scheme with simulation results.


projective synchronization piecewise chaotic map Lyapunov function master–slave method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Sun, Y. Shen, and X. Zhang, “Modified projective and modified function projective synchronization of a class of real nonlinear systems and a class of complex nonlinear systems,” Nonlinear Dyn., 78, 1755–1764 (2014).MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett., 64, 821–824 (1990).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    H.-T. Yau, “Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs,” Nonlinear Anal.: Real World Appl., 9, 2253–2261 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    H. N. Agiza, “Chaos synchronization of Lü dynamical system,” Nonlinear Anal.: Theory, Methods Appl., 58, 11–20 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    X. Wu and J. Wang, “Adaptive generalized function projective synchronization of uncertain chaotic complex systems,” Nonlinear Dyn., 73, 1455–1467 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    N. F. Rolkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E, 51, 980–994 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    H. Dai, G. Si, and Y. Zhang, “Adaptive generalized function matrix projective lag synchronization of uncertain complex dynamical networks with different dimensions,” Nonlinear Dyn., 74, 629–648 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    L. Lu and C. Li, “Generalized synchronization of spatiotemporal chaos in a weighted complex network,” Nonlinear Dyn., 63, 699–710 (2011).CrossRefGoogle Scholar
  9. 9.
    D. Ghosh, “Nonlinear active observer-based generalized synchronization in time-delayed systems,” Nonlinear Dyn., 59, 289–296 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of chaotic oscillators,” Phys. Rev. Lett., 76, 1804–1807 (1996).ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    S. K. Bhowmick, P. Pal, P. K. Roy, and S. K. Dana, “Lag synchronization and scaling of chaotic attractor in coupled system,” Chaos, 22, 023151 (2012); arXiv:1206.6723v1 [nlin.CD] (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Y. Chen, X. Chen, and S. Gu, “Lag synchronization of structurally nonequivalent chaotic systems with time delay,” Nonlinear Anal., 66, 1929–1937 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Z.-M. Ge and Y.-S. Chen, “Synchronization of unidirectional coupled chaotic systems via partial stability,” Chaos Solitons Fractals, 21, 101–111 (2004).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R. Mainieri and J. Rehacek, “Projective synchronization in three-dimensional chaotic systems,” Phys. Rev. Lett., 82, 3042–3045 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    C.-M. Chang and H.-K. Chen, “Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems,” Nonlinear Dyn., 62, 851–858 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Z.-L. Wang, “Projective synchronization of hyperchaotic system and Liu system,” Nonlinear Dyn., 59, 455–462 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    J. Sun, Y. Shen, and G. Zhang, “Transmission projective synchronization of multi-systems with non-delayed and delayed coupling via impulsive control,” Chaos, 22, 043107 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L. Runzi, “Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters,” Phys. Lett. A., 372, 3667–3671 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. E. Hramov and A. A. Koronovskii, “Time scale synchronization of chaotic oscillators,” Phys. D, 206, 252–264 (2005); arXiv:nlin/0602053v1 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    J. Sun, Y. Shen, Q. Yin, and C. Xu, “Compound synchronization of four memristor chaotic oscillator systems and secure communication,” Chaos, 23, 013140 (2013).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. Coronel-Escamilla, J. F. Gómez-Aguilar, L. Torres, R. F. Escobar-Jiménez, and M. Valtierra-Rodriguez, “Synchronization of chaotic systems involving fractional operators of Liouville–Caputo type with variable-order,” Phys. A, 487, 1–21 (2017).MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Nemati, “Numerical solution of 2D fractional optimal control problems by the spectral method combined with Bernstein operational matrix,” Internat. J. Control, 1–14 (2017).Google Scholar
  23. 23.
    H. Ahmed, I. Salgado, and H. Rios, “Robust synchronization of master–slave chaotic systems using approximate model: An experimental study,” ISA Trans., 73, 141–146 (2018).CrossRefGoogle Scholar
  24. 24.
    D. Zhang, J. Mei, and P. Miao, “Global finite-time synchronization of different dimensional chaotic systems,” Appl. Math. Model., 48, 303–315 (2017).MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. A. Jafarizadeh, M. Foroutan, and S. Behnia, “Hierarchy of piecewise non-linear maps with non-ergodic behavior,” J. Phys. A: Math. Gen., 37, 9403–9417 (2004); arXiv:nlin/0409054v1 (2004).ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    N. Masuda and K. Aihara, “Cryptosystems with discretized chaotic maps,” IEEE Trans. Circuits Systems I: Fund. Theory Appl., 49, 28–40 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    H. Zhou and X. Ling, “Generating chaotic secure sequence with desired statistical properties and high security,” Internat. J. Bifur. Chaos, 7, 205–213 (1997).CrossRefzbMATHGoogle Scholar
  28. 28.
    F. Huang and Z.-H. Guan, “A modified method of a class of recently presented cryptosystems,” Chaos Solitons Fractals, 23, 1893–1899 (2005).ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    S. Tao, W. Ruli, and Y. Yixun, “The theoretical design for a class of new chaotic feedback stream ciphers,” Acta Eletronica Sinica, 27, 47–50 (1999).Google Scholar
  30. 30.
    A. Baranovsky and D. Daems, “Design of one-dimensional chaotic maps with prescribed statistical properties,” Internat. J. Bifur. Chaos, 5, 1585–1598 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    S. Li, X. Mou, Y. Cai, Z. Ji, and J. Zhang, “One the security of a chaotic encryption scheme: problems with computerized chaos,” Comput. Phys. Commun., 153, 52–58 (2003).ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, Cambridge (2001).CrossRefzbMATHGoogle Scholar
  33. 33.
    J. M. V. Grzybowski, M. Rafikov, and E. E. N. Macau, “Synchronization analysis for chaotic communication on a satellite formulation flying,” Acta Astronautica, 67, 881–891 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    H. G. Enjieu Kadji, J. B. Chabi Orou, R. Yamapi, and P. Woafo, “Nonlinear dynamics and strange attractors in the biological system,” Chaos Solitons Fractals, 32, 862–882 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    A. Nemati and K. Mamehrashi, “The use of the Ritz method and Laplace transform for solving 2D fractionalorder optimal control problems described by the Roesser model,” Asian J. Control, 21, 1–13 (2019).Google Scholar
  36. 36.
    A. B. Benhassine, “Fractional Hamiltonian systems with locally defined potentials,” Theor. Math. Phys., 195, 563–571 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    S. Das and V. K. Yadav, “Chaos control and function projective synchronization of fractional-order systems through the backstepping method,” Theor. Math. Phys., 189, 1430–1439 (2016).CrossRefzbMATHGoogle Scholar
  38. 38.
    A. Nemati and S. A. Yousefi, “A numerical scheme for solving two-dimensional fractional optimal control problems by the Ritz method combined with fractional operational matrix,” IMA J. Math. Control Inform., 34, 1079–1097 (2017).MathSciNetzbMATHGoogle Scholar
  39. 39.
    L. A. Kalyakin, “Synchronization in a nonisochronous nonautonomous system,” Theor. Math. Phys., 181, 1339–1348 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    M. A. Jafarizadeh, S. Behnia, S. Khorram, and H. Naghshara, “Hierarchy of chaotic maps with an invariant measure,” J. Statist. Phys., 104, 1013–1028 (2001).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    S. Behnia, A. Akhshani, S. Ahadpour, H. Mahmodi, and A. Akhavan, “A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps,” Phys. Lett. A., 366, 391–396 (2007).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Ahadpour
    • 1
    Email author
  • A. Nemati
    • 2
  • F. Mirmasoudi
    • 1
  • N. Hematpour
    • 1
  1. 1.Department of PhysicsUniversity of Mohaghegh ArdabiliArdabilIran
  2. 2.Young Researchers and Elite Club, Ardabil BranchIslamic Azad UniversityArdabilIran

Personalised recommendations