Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1845–1855 | Cite as

Plane Symmetric Solutions in f(\(\mathcal{G}\), T) Gravity

  • M. F. ShamirEmail author
  • A. Saeed
Article
  • 13 Downloads

Abstract

We obtain several exact solutions for a plane symmetric space–time in the framework of a recently constructed f(\(\mathcal{G}\), T) theory of gravity, where f(\(\mathcal{G}\), T) is a generic function of the Gauss–Bonnet invariant G and the trace T of the energy–momentum tensor. To obtain solutions, we consider a power-law f(\(\mathcal{G}\), T) gravity model and analyze the obtained results graphically. Moreover, to justify the method, we reconstruct several well-known cosmological results.

Keywords

f(\(\mathcal{G}\), T) gravity plane symmetric space–time exact solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nojiri and S. D. Odintsov, “Modified Gauss–Bonnet theory as gravitational alternative for dark energy,” Phys. Lett. B, 631, 1–6 (2005)ADSMathSciNetzbMATHGoogle Scholar
  2. 1a.
    S. Nojiri, S. D. Odintsov, and O. G. Gorbunova, “Dark energy problem: From phantom theory to modified Gauss–Bonnet gravity,” J. Phys. A, 39, 6627–6633 (2006); arXiv:hep-th/0510183v2 (2005).ADSMathSciNetzbMATHGoogle Scholar
  3. 2.
    G. Congnola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, “Dark energy in modified Gauss–Bonnet gravity: Late-time acceleration and the hierarchy problem,” Phys. Rev. D, 73, 084007 (2006); arXiv:hep-th/0601008v2 (2006)ADSGoogle Scholar
  4. 2a.
    “String-inspired Gauss–Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy,” Phys. Rev. D, 75, 086002 (2007); arXiv:hep-th/0611198v3 (2006).Google Scholar
  5. 3.
    S. M. Carroll, A. De Felice, V. Duvvuri, D. A. Easson, M. Trodden, and M. S. Turner, “Cosmology of generalized modified gravity models,” Phys. Rev. D, 71, 063513 (2005); arXiv:astro-ph/0410031v2 (2004).ADSGoogle Scholar
  6. 4.
    B. M. N. Carter and I. P. Neupane, “Dynamical relaxation of dark energy: A solution to early inflation, latetime acceleration, and the cosmological constant problem,” Phys. Lett. B, 638, 94–99 (2006); arXiv:hep-th/0510109v5 (2005).ADSzbMATHGoogle Scholar
  7. 5.
    S. Nojiri and S. D. Odintsov, “Modified f(R) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe,” Phys. Rev. D, 74, 086005 (2006); arXiv:hep-th/0608008v3 (2006).ADSGoogle Scholar
  8. 6.
    S. Nojiri, S. D. Odintsov, and P. V. Tretyakov, “From inflation to dark energy in the non-minimal modified gravity,” Prog. Theor. Phys. Suppl., 172, 81–89 (2008); arXiv:0710.5232v1 [hep-th] (2007).ADSzbMATHGoogle Scholar
  9. 7.
    A. De Felice and S. Tsujikawa, “Solar system constraints on f(G) gravity models,” Phys. Rev. D, 80, 063516 (2009); arXiv:0907.1830v1 [hep-th] (2009).ADSGoogle Scholar
  10. 8.
    S. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” eConf, C0602061, 06 (2006); Internat. J. Geom. Meth. Mod. Phys., 4, 115–145 (2007).MathSciNetzbMATHGoogle Scholar
  11. 9.
    S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: From F(R) theory to Lorentz noninvariant models,” Phys. Rep., 505, 59–144 (2011); arXiv:1011.0544v4 [gr-qc] (2010).ADSMathSciNetGoogle Scholar
  12. 10.
    V. Fayaz, H. Hossienkhani, and A. Aghamohammadi, “Power-law solution for anisotropic universe in f(G) gravity,” Astrophys. Space Sci., 357, 136 (2015).ADSGoogle Scholar
  13. 11.
    N. M. Garcia, T. Harko, F. S. N. Lobo, and J. P. Mimoso, “Energy conditions in modified Gauss–Bonnet gravity,” Phys. Rev. D, 83, 104032 (2011); arXiv:1011.4159v2 [gr-qc] (2010).ADSGoogle Scholar
  14. 12.
    M. F. Shamir, “Anisotropic cosmological models in f(G) gravity,” Astrophys. Space Sci., 361, 147 (2016).ADSMathSciNetGoogle Scholar
  15. 13.
    M. F. Shamir, “Dynamics of anisotropic universe in f(G) gravity,” Astrophys. Space Sci., 362, 67 (2017).ADSMathSciNetGoogle Scholar
  16. 14.
    M. Sharif and H. I. Fatima, “Noether symmetries in f(G) gravity,” JETP, 122, 104–112 (2016).ADSGoogle Scholar
  17. 15.
    S. Nojiri, S. D. Odintsov, and M. Sami, “Dark energy cosmology from higher-order, string-inspired gravity, and its reconstruction,” Phys. Rev. D, 74, 046004 (2006); arXiv:hep-th/0605039v3 (2006)ADSGoogle Scholar
  18. 15a.
    S. Nojiri and S. D. Odintsov, “Modified gravity and its reconstruction from the universe expansion history,” J. Phys.: Conf. Ser., 66, 012005 (2007).Google Scholar
  19. 16.
    A. De Felice, T. Suyama, and T. Tanaka, “Stability of Schwarzschild-like solutions in f(R, G) gravity models,” Phys. Rev. D, 83, 104035 (2011); arXiv:1102.1521v1 [gr-qc] (2011).ADSGoogle Scholar
  20. 17.
    S. Capozziello, A. N. Makarenko, and S. D. Odintsov, “Gauss–Bonnet dark energy by Lagrange multipliers,” Phys. Rev. D, 87, 084037 (2013); arXiv:1302.0093v2 [gr-qc] (2013).ADSGoogle Scholar
  21. 18.
    S. Capozziello, M. De Laurentis, and S. D. Odintsov, “Noether symmetry approach in Gauss–Bonnet cosmology,” Modern Phys. Lett. A, 29, 1450164 (2014).ADSMathSciNetzbMATHGoogle Scholar
  22. 19.
    M. F. Shamir and F. Kanwal, “Noether symmetry analysis of anisotropic universe in modified gravity,” Eur. Phys. J. C, 77, 286 (2017); arXiv:1704.06653v1 [gr-qc] (2017).ADSGoogle Scholar
  23. 20.
    B. Wu and B. Ma, “Spherically symmetric solution of f(R, G) gravity at low energy,” Phys. Rev. D, 92, 044012 (2015); arXiv:1510.08552v1 [gr-qc] (2015).ADSMathSciNetGoogle Scholar
  24. 21.
    K. Atazadeh and F. Darabi, “Energy conditions in f(R,G) gravity,” Gen. Rel. Grav., 46, 1664 (2014); arXiv: 1302.0466v4 [gr-qc] (2013).ADSMathSciNetzbMATHGoogle Scholar
  25. 22.
    L. Sebastiani, “Finite-time singularities in modified F(R,G)-gravity and singularity avoidance,” in: Cosmology, Quantum Vacuum, and Zeta Functions (Springer Proc. Phys., Vol. 137, D. Odintsov, D. Sáez-Gómez, and S. Xambó-Descamps, eds.), Springer, Berlin (2011), pp. 261–270; arXiv:1008.3041v2 [gr-qc] (2010).Google Scholar
  26. 23.
    M. Sharif and A. Ikram, “Energy conditions in f(G, T) gravity,” Eur. Phys. J. C, 76, 640 (2016); arXiv:1608.01182v3 [gr-qc] (2016).ADSGoogle Scholar
  27. 24.
    M. Sharif and A. Ikram, “Stability analysis of some reconstructed cosmological models in f(G, T) gravity,” Phys. Dark Univ., 17, 1–9 (2017); arXiv:1612.02037v2 [gr-qc] (2016).Google Scholar
  28. 25.
    M. Sharif and A. Ikram, “Stability analysis of Einstein universe in f(G, T) gravity,” Internat. J. Modern Phys. D, 26, 1750084 (2017); arXiv:1704.05759v1 [gr-qc] (2017).ADSMathSciNetzbMATHGoogle Scholar
  29. 26.
    M. Sharif and A. Ikram, “Energy conditions in f(G, T) gravity,” Eur. Phys. J. C, 76, 640 (2016); arXiv: 1608.01182v3 [gr-qc] (2016).ADSGoogle Scholar
  30. 27.
    M. F. Shamir and M. Ahmad, “Noether symmetry approach in f(G, T) gravity,” Eur. Phys. J. C, 77, 55 (2017); arXiv:1611.07338v2 [physics.gen-ph] (2016).ADSGoogle Scholar
  31. 28.
    M. F. Shamir and M. Ahmad, “Some exact solutions in f(G, T) gravity via Noether symmetries,” Modern Phys. Lett. A, 32, 1750086.Google Scholar
  32. 29.
    M. F. Shamir, “Anisotropic universe in f(G, T) gravity,” Adv. High Energy Phys., 2017, 6378904 (2017).MathSciNetzbMATHGoogle Scholar
  33. 30.
    M. Sharif and A. Ikram, “Thermodynamics in f(G, T) gravity,” Adv. High Energy Phys., 2018, 2563871 (2018).zbMATHGoogle Scholar
  34. 31.
    Z. Bhatti, M. Sharif, Z. Yousaf, and M. Ilyas, “Role of f(G, T) gravity on the evolution of relativistic stars,” Internat. J. Modern Phys. D, 27, 1850044 (2018).ADSMathSciNetGoogle Scholar
  35. 32.
    M. Sharif and M. F. Shamir, “Plane symmetric solutions in f(R) gravity,” Modern Phys. Lett. A, 25, 1281–1288 (2010); arXiv:0912.1393v1 [gr-qc] (2009).ADSMathSciNetzbMATHGoogle Scholar
  36. 33.
    M. F. Shamir, “Plane symmetric solutions in f(R, T) gravity,” Commun. Theor. Phys., 65, 301–307 (2016).ADSMathSciNetzbMATHGoogle Scholar
  37. 34.
    R. Kantowski and R. K. Sachs, “Some spatially homogeneous anisotropic relativistic cosmological models,” J. Math. Phys., 7, 443–446 (1966).ADSMathSciNetGoogle Scholar
  38. 35.
    W. Xing-Xiang, “Bianchi type-III string cosmological model with bulk viscosity in general relativity,” Chinese Phys. Lett., 22, 29–32 (2005).ADSGoogle Scholar
  39. 36.
    K. S. Thorne, “Primordial element formation, primordial magnetic fields, and the isotropy of the universe,” Astrophys. J., 148, 51–67 (1967).ADSGoogle Scholar
  40. 37.
    C. B. Collins and S. W. Hawking, “Why is the universe isotropic?” Astrophys. J., 180, 317–334 (1973).ADSMathSciNetGoogle Scholar
  41. 38.
    S. R. Roy and S. K. Banerjee, “Bianchi type II string cosmological models in general relativity,” Class. Q. Grav., 12, 1943–1948 (1995).ADSMathSciNetzbMATHGoogle Scholar
  42. 39.
    R. Bali and P. Kumawat, “Bulk viscous L.R.S. Bianchi type V tilted stiff fluid cosmological model in general relativity,” Phys. Lett. B, 665, 332–337 (2008).ADSMathSciNetzbMATHGoogle Scholar
  43. 40.
    M. Sharif and M. Zubair, “Dynamics of Bianchi I universe with magnetized anisotropic dark energy,” Astrophys. Space Sci., 330, 399–405 (2010).ADSzbMATHGoogle Scholar
  44. 41.
    G. Cognola, M. Gastaldi, and S. Zerbini, “On the stability of a class of modified gravitational models,” Internat. J. Theor. Phys., 47, 898–910 (2008).ADSMathSciNetzbMATHGoogle Scholar
  45. 42.
    A. De Felice and S. Tsujikawa, “Construction of cosmologically viable f(G) gravity models,” Phys. Lett. B, 675, 1–8 (2009); arXiv:0810.5712v2 [hep-th] (2008).ADSGoogle Scholar
  46. 43.
    S. Tsujikawa, “Modified gravity models of dark energy,” in: Lectures on Cosmology (Lect. Notes Phys., Vol. 800, G. Wolschin, ed.), Springer, Berlin (2010), pp. 99–145; arXiv:1101.0191v1 [gr-qc] (2011).Google Scholar
  47. 44.
    S. Nojiri, S. D. Odintsov, and S. Tsujikawa, “Properties of singularities in the (phantom) dark energy universe,” Phys. Rev. D, 71, 063004 (2005); arXiv:hep-th/0501025v2 (2005).ADSGoogle Scholar
  48. 45.
    H. Takeno, “On plane wave solutions of field equations in general relativity,” Tensor, n.s., 7, 97–102 (1957).MathSciNetzbMATHGoogle Scholar
  49. 46.
    A. Peres, “Null electromagnetic fields in general relativity theory,” Phys. Rev., 118, 1105–1110 (1960).ADSMathSciNetzbMATHGoogle Scholar
  50. 47.
    T. Nordtvedt and H. Pegels, “Electromagnetic plane wave solutions in general relativity,” Ann. Phys., 17, 426–435 (1962).ADSMathSciNetzbMATHGoogle Scholar
  51. 48.
    V. Gaikwad and T. M. Karade, “Plane symmetric higher-dimensional space–times,” Acta Phys. Hungar., 67, 259–262 (1990).MathSciNetGoogle Scholar
  52. 49.
    K. S. Adhav and T. M. Karade, Post Raag Reports, No. 279 (1994).Google Scholar
  53. 50.
    S. R. Bhoyar and A. G. Deshmukh, “Plane wave solutions of the field equations of general relativity–II,” Romanian Rep. Phys., 64, 933–944 (2012).Google Scholar
  54. 51.
    M. L. Bedran, M. O. Calvo, F. M. Paiva, and D. Soares, “Taub’s plane-symmetric vacuum spacetime reexamined,” Phys. Rev. D, 55, 3431–3439 (1997); arXiv:gr-qc/9608058v1 (1996).ADSMathSciNetGoogle Scholar
  55. 52.
    T. Feroze, A. Qadir, and M. Ziad, “Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration,” Phys. Rev. D, 68, 123512 (2003).Google Scholar
  56. 53.
    M. F. Shamir and A. Saeed, “Plane symmetric solutions in f(\(\mathcal{G}\)) gravity,” JETP, 125, 1065–1070 (2017).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National University of Computer and Emerging SciencesLahorePakistan

Personalised recommendations