Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1823–1837 | Cite as

Second-Order Equations for Fermions on Schwarzschild, Reissner–Nordström, Kerr, and Kerr–Newman Space–Times

  • V. P. NeznamovEmail author
Article
  • 6 Downloads

Abstract

We obtain relativistic self-adjoint second-order equations for fermions in Schwarzschild, Reissner–Nordström, Kerr, and Kerr–Newman gravitational and electromagnetic fields. Second-order equations with effective potentials and spinor wave functions extend opportunities for obtaining regular solutions of quantum mechanics equations for spin-1/2 particles.

Keywords

Dirac equation self-adjoint second-order equation spinor wave function effective potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. M. Dirac, The Principles of Quantum Mechanics, Clarendon, Oxford (1958).CrossRefzbMATHGoogle Scholar
  2. 2.
    Ya. B. Zel’dovich and V. S. Popov, “Electronic structure of superheavy atoms,” Sov. Phys. Uspekhi, 14, 673–694 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    M. V. Gorbatenko and V. P. Neznamov, “Solution of the problem of uniqueness and Hermiticity of Hamiltonians for Dirac particles in gravitational fields,” Phys. Rev. D, 82, 104056 (2010); arXiv:1007.4631v1 [gr-qc] (2010).ADSCrossRefGoogle Scholar
  4. 4.
    M. V. Gorbatenko and V. P. Neznamov, “Uniqueness and self-conjugacy of Dirac Hamiltonians in arbitrary gravitational fields,” Phys. Rev. D, 83, 105002 (2011); arXiv:1102.4067v1 [gr-qc] (2011).ADSCrossRefGoogle Scholar
  5. 5.
    M. V. Gorbatenko and V. P. Neznamov, “A modified method for deriving self-conjugate Dirac Hamiltonians in arbitrary gravitational fields and its application to centrally and axially symmetric gravitational fields,” J. Modern Phys., 6, 54289 (2015); arXiv:1107.0844v7 [gr-qc] (2011).CrossRefGoogle Scholar
  6. 6.
    J. Schwinger, “Energy and momentum density in field theory,” Phys. Rev., 130, 800–805 (1963).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    D. R. Brill and J. A. Wheeler, “Interaction of neutrinos and gravitational fields,” Rev. Modern Phys., 29, 465–479 (1957).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. R. Dolan, “Trinity hall and astrophysics group,” Doctoral dissertation, Cavendish Lab., Univ. of Cambridge, Cambridge (2006).Google Scholar
  9. 9.
    S. Chandrasekhar, “The solution of Dirac’s equation in Kerr geometry,” Proc. Roy. Soc. London Ser. A, 349, 571–575 (1976).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Chandrasekhar, “Errata: The solution of Dirac’s equation in Kerr geometry,” Proc. R. Soc. London Ser. A, 350, 565 (1976).CrossRefGoogle Scholar
  11. 11.
    D. N. Page, “Dirac equation around a charged, rotating black hole,” Phys. Rev. D, 14, 1509–1510 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    L. Parker, “One-electron atom as a probe of spacetime curvature,” Phys. Rev. D, 22, 1922–1934 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    V. P. Neznamov and V. E. Shemarulin, “Analysis of half-spin particle motion in Kerr–Newman field by means of effective potentials in second-order equations,” Grav. Cosmol., 24, 129–138 (2018).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. V. Gorbatenko and V. P. Neznamov, “On the uniqueness of the Dirac theory in curved and flat spacetime,” Ann. Phys. (Berlin), 526, 195–200 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    F. Finster, N. Kamran, J. Smoller, and S.-T. Yan, “Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry,” Commun. Pure Appl. Math., 53, 902–929 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    I. M. Ternov, A. B. Gaina, and G. A. Chizhov, “Finite motion of electrons in the field of microscopic black holes,” Sov. Phys. J., 23, 695–700 (1980).CrossRefzbMATHGoogle Scholar
  17. 17.
    D. Batic, M. Nowakowski, and K. Morgan, “The problem of embedded eigenvalues for the Dirac equation in the Schwarzschild black hole metric,” Universe, 2, 31 (2016); arXiv:1701.03889v1 [gr-qc] (2017).ADSCrossRefGoogle Scholar
  18. 18.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer, Berlin (1957).CrossRefzbMATHGoogle Scholar
  19. 19.
    V. P. Neznamov, “Impenetrable barriers for positrons in neighbourhood of superheavy nuclei with Z>118,” J. Phys.: Conf. Ser., 938, 012033 (2017).Google Scholar
  20. 20.
    V. P. Neznamov and I. I. Safronov, “Stationary solutions of a second-order equation for point fermions in a Schwarzschild gravitational field [in Russian],” Zhur. Eksp. Teor. Fiz., 154, 761–773 (2018); English transl. JETP, 127, No. 4 (to appear).CrossRefGoogle Scholar
  21. 21.
    V. P. Neznamov, I. I. Safronov, and V. E. Shemarulin, “Stationary solutions of a second-order equation for point fermions in a Reissner–Nordström space–time [in Russian],” Zhur. Eksp. Teor. Fiz., 154, 802–825 (2018); English transl. JETP, 127, No. 4 (to appear).CrossRefGoogle Scholar
  22. 22.
    V. P. Neznamov, I. I. Safronov, and V. Shemarulin, “Stationary solutions of the second-order equation for fermions in Kerr–Newman space–time [in Russian],” Zhur. Eksp. Teor. Fiz., 154, No. 6(12) (2018 to appear); English transl. JETP, 127, No. 6 (to appear).Google Scholar
  23. 23.
    C. L. Pekeris and K. Frankowski, “Solution of Dirac’s equation in Reissner–Nordström geometry,” Proc. Natl. Acad. Sci. USA, 83, 1978–1982 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    G. T. Horowitz and D. Marolf, “Quantum probes of spacetime singularities,” Phys. Rev. D, 52, 5670–5675 (1995).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.FSUE ”RFNC-VNIIEF”SarovRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations