Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1806–1822 | Cite as

Discretization of Hamiltonian Systems and Intersection Theory

  • A. V. TsiganovEmail author
Article
  • 6 Downloads

Abstract

We discuss the possibility of using the intersection points of the common level surface of integrals of motion with an auxiliary curve to construct finite-difference equations corresponding to different discretizations of the original integrable system. As an example, we consider the generalized one-dimensional oscillator with third- and fifth-degree nonlinearity, for which we show that the intersection divisors of the hyperelliptic curve with straight lines, quadrics, and cubics generate families of integrable discrete maps.

Keywords

finite-dimensional integrable system discrete integrable map intersection theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  2. 2.
    A. M. Vinogradov and B. A. Kupershmidt, “The structures of Hamiltonian mechanics,” Russ. Math. Surveys, 32, 177–243 (1977).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. Eisenbud and J. Harris, 3264 and All That: A Second Course in Algebraic Geometry, Cambridge Univ. Press, Cambridge (2016).CrossRefzbMATHGoogle Scholar
  4. 4.
    W. Fulton, Intersection Theory, Springer, Berlin (1984).CrossRefzbMATHGoogle Scholar
  5. 5.
    P. Griffiths, “The legacy of Abel in algebraic geometry,” in: The Legacy of Niels Henrik Abel (O. A. Laudal and R. Piene, eds.), Springer, Berlin (2004), pp. 179–205.Google Scholar
  6. 6.
    S. L. Kleiman, “The Picard scheme,” in: Fundamental Algebraic Geometry (Math. Surv. Monogr., Vol. 123), Amer. Math. Soc., Providence, R. I. (2005), pp. 235–321.Google Scholar
  7. 7.
    H. F. Baker, Abel’s Theorem and the Allied Theory of Theta Functions, Cambridge Univ. Press, Cambridge (1897).zbMATHGoogle Scholar
  8. 8.
    A. G. Greenhill, The Applications of Elliptic Functions, Macmillan, London (1892).zbMATHGoogle Scholar
  9. 9.
    A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Wiley, New York (1979).zbMATHGoogle Scholar
  10. 10.
    C. Murakami, W. Murakami, K.-I. Hirose, and Y. H. Ichikawa, “Integrable Duffing’s maps and solutions of the Duffing equation,” Chaos Solitons Fractals, 15, 425–443 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    C. Murakami, W. Murakami, K.-I. Hirose, and Y. H. Ichikawa, “Global periodic structure of integrable Duffing’s maps,” Chaos Solitons Fractals, 16, 233–244 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. B. Potts, “Exact solution of a difference approximation to Duffing’s equation,” J. Austral.Math. Soc. Ser. B, 23, 64–77 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R. B. Potts, “Best difference equation approximation to Duffing’s equation,” J. Austral. Math. Soc. Ser. B, 23, 349–356 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yu. B. Suris, “Integrable mappings of the standard type,” Funct. Anal. Appl., 23, 74–76 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Progr. Math., Vol. 219), Birkhäuser, Basel (2003).CrossRefzbMATHGoogle Scholar
  16. 16.
    N. H. Abel, “Mémoire sure une propriété générale d’une class tr`es éntendue des fonctions transcendantes,” in: Oeuvres complétes, Vol. 1, Grondahl, Christiania (1881), pp. 145–211.Google Scholar
  17. 17.
    H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren, eds., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall, London (2006).zbMATHGoogle Scholar
  18. 18.
    A. V. Tsiganov, “Bäcklund transformations and divisor doubling,” J. Geom. Phys., 126, 148–158 (2018); arXiv:1702.03642v2 [nlin.SI] (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. I. Bobenko, B. Lorbeer, and Yu. B. Suris, “Integrable discretizations of the Euler top,” J. Math. Phys., 39, 6668–6683 (1998).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    P. Deift and L.-C. Li, “Poisson geometry of the analog of theMiura maps and Bäcklund–Darboux transformations for equations of Toda type and periodic Toda flows,” Commun. Math. Phys., 143, 201–214 (1991).ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability (Cambridge Texts Appl. Math., Vol. 54), Cambridge Univ. Press, Cambridge (2016).CrossRefzbMATHGoogle Scholar
  22. 22.
    V. B. Kuznetsov and P. Vanhaecke, “Bäcklund transformations for finite-dimensional integrable systems: A geometric approach,” J. Geom. Phys., 44, 1–40 (2002); arXiv:nlin/0004003v1 (2000).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Moser and A. P. Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials,” Commun. Math. Phys., 139, 217–243 (1991).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yu. N. Fedorov, “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group SO(3),” J. Nonlinear Math. Phys., 12, suppl. 2, 77–94 (2005); arXiv:nlin/0505045v1 (2005).ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    A. Elías-Zíniga, “Exact solution of the cubic-quintic Duffing oscillator,” Appl. Math. Model., 37, 2574–2579 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    V. Z. Enolskii, M. Pronine, and P. H. Richter, “Double pendulum and θ-divisor,” J. Nonlinear Sci., 13, 157–174 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    A. V. Tsiganov, “Simultaneous separation for the Neumann and Chaplygin systems,” Regul. Chaotic Dyn., 20, 74–93 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    A. V. Tsiganov, “On the Chaplygin system on the sphere with velocity dependent potential,” J. Geom. Phys., 92, 94–99 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    A. V. Tsiganov, “On auto and hetero Bäcklund transformations for the Hénon–Heiles systems,” Phys. Lett. A, 379, 2903–2907 (2015); arXiv:1501.06695v2 [nlin.SI] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. V. Tsiganov, “Bäcklund transformations for the nonholonomic Veselova system,” Regul. Chaotic Dyn., 22, 163–179 (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    A. V. Tsiganov, “Integrable discretization and deformation of the nonholonomic Chaplygin ball,” Regul. Chaotic Dyn., 22, 353–367 (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    A. V. Tsiganov, “New bi-Hamiltonian systems on the plane,” J. Math. Phys., 58, 062901 (2017); arXiv: 1701.05716v2 [nlin.SI] (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    A. V. Tsiganov, “Bäcklund transformations for the Jacobi system on an ellipsoid,” Theor. Math. Phys., 192, 1350–1364 (2017).CrossRefzbMATHGoogle Scholar
  34. 34.
    F. Kötter, “Die von Steklow und Liapunow entdeckten integralen Fälle, der Bewegung eines starren Körpers in einer Flüussigkeit,” Sitzungsber. Preuss. Akad. Wiss. Berlin, 6, 79–87 (1900).zbMATHGoogle Scholar
  35. 35.
    Yu. Fedorov and I. Basak, “Separation of variables and explicit theta-function solution of the classical Steklov–Lyapunov systems: A geometric and algebraic geometric background,” Regul. Chaotic Dyn., 16, 374–395 (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    A. V. Tsiganov, “New variables of separation for the Steklov–Lyapunov system,” SIGMA, 8, 012 (2012).MathSciNetzbMATHGoogle Scholar
  37. 37.
    V. N. Rubanovskii, “New cases of the integrability of equations of motion of a heavy solid in liquid,” Vestn. Mosk. Univ. Ser. 1 Matem. Mekh., 23, No. 2, 99–106 (1968).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations