Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1797–1805 | Cite as

Calculation of the Discrete Spectrum of some Two-Dimensional Schrödinger Equations with a Magnetic Field

  • A. V. Marikhina
  • V. G. MarikhinEmail author


One of us previously obtained and integrated the first examples of two-dimensional Schrödinger equations with a magnetic field belonging to the class of quasi–exactly solvable problems. It was shown that the wave functions are expressed in terms of degenerations of the Heun function: biconfluent and confluent Heun functions. Algebraic conditions were also found that determine the discrete spectrum and wave functions. Our goal here is to solve these algebraic equations numerically. In some cases, we can find an analytic approximation of the discrete spectrum.


quantum mechanics Heun function quasi–exactly solvable problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Planck, “Über eine Verbesserung der Wienschen Spectralgleichung,” Verhandl. Dtsc. Phys. Ges., 2, 202–204 (1900).Google Scholar
  2. 2.
    E. Schrödinger, “Quantisierung als Eigenwertproblem,” Ann. Phys., 384, 361–376 (1926).CrossRefzbMATHGoogle Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Nonrelativistic Theory, Nauka, Moscow (1989); English transl. prev. ed., Pergamon, Oxford (1977).Google Scholar
  4. 4.
    V. G. Marikhin, “Two new integrable cases of two-dimensional quantum mechanics with a magnetic ield,” JETP Lett., 103, 489–493 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    A. Turbiner, “Quasi-exactly-solvable problems and sl(2) algebra,” Commun. Math. Phys., 118, 467 (1988).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Ushveridze, “Quasi–exactly solvable models in quantum mechanics,” Sov. J. Part. Nucl., 20, 504–528 (1990).MathSciNetGoogle Scholar
  7. 7.
    A. M. Ishkhanyan, “Exact solution of the Schrödinger equation for the inverse square root potential V0/√ x,” Europhys. Lett., 112, 10006 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Ronveaux, ed., Heun’s Differential Equations, Oxford Univ. Press, New York (1995).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsChernogolovka, Moscow OblastRussia

Personalised recommendations