Theoretical and Mathematical Physics

, Volume 197, Issue 2, pp 1663–1676 | Cite as

Discreteness of Dyonic Dilaton Black Holes

  • E. A. DavydovEmail author


We show that there are two classes of solutions describing static spherically symmetric dyonic dilaton black holes with two nonsingular horizons. The first class includes only the already known solutions that exist for a few special values of the dilaton coupling constant. Solutions in the second class have essentially different properties. They exist for continuously varying values of the dilaton coupling constant but arise only for discrete values of the dilaton field at the horizon. For each given value of the dilaton coupling constant, there can exist several such solutions differing by the number of zeros of the shifted dilaton function in the subhorizon region and separating the domains of singular solutions.


dilatonic gravity nonextremal black hole self-gravitating dyon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. W. Gibbons and K. Maeda, “Black holes and membranes in higher-dimensional theories with dilaton fields,” Nucl. Phys. B, 298, 741–775 (1988).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Garfinkle, G. T. Horowitz, and A. Strominger, “Charged black holes in string theory,” Phys. Rev. D, 43, 3140–3143 (1991); Erratum, 45, 3888 (1992).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Dobiasch and D. Maison, “Stationary, spherically symmetric solutions of Jordan’s unified theory of gravity and electromagnetism,” Gen. Rel. Grav., 14, 231–242 (1982).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    G. W. Gibbons, “Antigravitating black hole solitons with scalar hair in N=4 supergravity,” Nucl. Phys. B, 207, 337–349 (1982).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S.-C. Lee, “Kaluza–Klein dyons and the Toda lattice,” Phys. Lett. B, 149, 98–99 (1984).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. J. Poletti, J. Twamley, and D. L. Wiltshire, “Dyonic dilaton black holes,” Class. Q. Grav., 12, 1753–1769 (1995); Erratum, 12, 2355 (1995); arXiv:hep-th/9502054v3 (1995).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. W. Gibbons, D. Kastor, L. A. J. London, P. K. Townsend, and J. H. Traschen, “Supersymmetric selfgravitating solitons,” Nucl. Phys. B, 416, 850–880 (1994); arXiv:hep-th/9310118v1 (1993).ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Nozawa, “On the Bogomol’nyi bound in Einstein–Maxwell-dilaton gravity,” Class. Q. Grav., 28, 175013 (2011); arXiv:1011.0261v2 [hep-th] (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D. Gal’tsov, M. Khramtsov, and D. Orlov, “‘Triangular’ extremal dilatonic dyons,” Phys. Lett. B, 743, 87–92 (2015); arXiv:1412.7709v2 [hep-th] (2014).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    B. Kostant, “The solution to a generalized Toda lattice and representation theory,” Adv. Math., 34, 195–338 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V. D. Ivashchuk, “Black brane solutions governed by fluxbrane polynomials,” J. Geom. Phys., 86, 101–111 (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M. E. Abishev, K. A. Boshkayev, V. D. Dzhunushaliev, and V. D. Ivashchuk, “Dilatonic dyon black hole solutions,” Class. Q. Grav., 32, 165010 (2015); arXiv:1504.07657v2 [gr-qc] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. E. Abishev, K. A. Boshkayev, and V. D. Ivashchuk, “Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields,” Eur. Phys. J. C, 77, 180 (2017); arXiv:1701.02029v3 [gr-qc] (2017).ADSCrossRefGoogle Scholar
  14. 14.
    V. D. Ivashchuk, “Composite fluxbranes with general intersections,” Class. Q. Grav., 19, 3033–3047 (2002); arXiv:hep-th/0202022v2 (2002).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. A. Golubtsova and V. D. Ivashchuk, “On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras,” arXiv:0804.0757v1 [nlin.SI] (2008).Google Scholar
  16. 16.
    N. Kundu, P. Narayan, N. Sircar, and S. P. Trivedi, “Entangled dilaton dyons,” JHEP, 1303, 155 (2013); arXiv:1208.2008v3 [hep-th] (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Amoretti, M. Baggioli, N. Magnoli, and D. Musso, “Chasing the cuprates with dilatonic dyons,” JHEP, 1606, 113 (2016); arXiv:1603.03029v2 [hep-th] (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    C. M. Chen, D. V. Gal’tsov, and D. G. Orlov, “Extremal dyonic black holes in D=4 Gauss–Bonnet gravity,” Phys. Rev. D, 78, 104013 (2008); arXiv:0809.1720v1 [hep-th] (2008).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Clément, “Rotating Kaluza–Klein monopoles and dyons,” Phys. Lett. A, 118, 11–13 (1986).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Rasheed, “The rotating dyonic black holes of Kaluza–Klein theory,” Nucl. Phys. B, 454, 379–401 (1995); arXiv:hep-th/9505038v1 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    D. V. Galtsov, A. A. Garcia, and O. V. Kechkin, “Symmetries of the stationary Einstein–Maxwell-dilaton system,” Class. Q. Grav., 12, 2887–2903 (1995); arXiv:hep-th/9504155v1 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    J. A. Cázares, H. García-Compeán, and V. S. Manko, “On the physical parametrization and magnetic analogs of the Emparan–Teo dihole solution,” Phys. Lett. B, 662, 213–216 (2008); Erratum, 665, 426 (2008); arXiv:0711.4802v1 [gr-qc] (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    G. Clément and D. Gal’tsov, “On the Smarr formula for rotating dyonic black holes,” Phys. Lett. B, 773, 290–294 (2017).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Peoples’ Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations