Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 2, pp 1635–1644 | Cite as

Existence of Majorana Bound States in A Superconducting Nanowire Near an Impurity

  • Yu. P. ChuburinEmail author
Article
  • 10 Downloads

Abstract

We consider a nanowire with the s-wave superconducting order induced as a result of the proximity effect in the presence of the Zeeman field and the Rashba interaction. For a small superconducting gap and small momenta, we analytically prove the existence of Majorana bound states for a certain local change in the Zeeman field or the superconducting order and also obtain explicit expressions for the corresponding wave functions. We study the scattering of excited states with energies that are close to boundary gap points in the case of propagation through an impurity for local changes in the indicated system parameters near this impurity and show that the transmission probability is equal to unity.

Keywords

superconductivity Majorana bound state nanowire impurity Zeeman field scattering problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. R. Elliot and M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics,” Rev. Modern Phys., 87, 137–163 (2015); arXiv:1403.4976v2 [cond-mat.supr-con] (2014).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Sato and S. Fujimoto, “Majorana fermions and topology in superconductors,” J. Phys. Soc. Japan, 85, 072001 (2016); arXiv:1601.02726v2 [cond-mat.supr-con] (2016).ADSCrossRefGoogle Scholar
  3. 3.
    J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Progr. Phys., 75, 076501 (2012); arXiv:1202.1293v1 [cond-mat.supr-con] (2012).ADSCrossRefGoogle Scholar
  4. 4.
    S. Das Sarma, A. Nag, and J. D. Sau, “How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires,” Phys. Rev. B, 94, 035143 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    J. D. Sau and E. Demler, “Bound states at impurities as a probe of topological superconductivity in nanowires,” Phys. Rev. B, 88, 205402 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    T. Karzig, G. Refael, and F. von Oppen, “Boosting Majorana zero modes,” Phys. Rev. X, 3, 041017 (2013).Google Scholar
  7. 7.
    S. Das Sarma, J. D. Sau, and T. D. Stanescu, “Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor–semiconductor nanowire,” Phys. Rev. B, 86, 220506 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    C.-X. Liu, F. Setiawan, J. D. Sau, and S. Das Sarma, “Phenomenology of soft gap, zero-bias peak, and zero-mode splitting in ideal Majorana nanowires,” Phys. Rev. B, 96, 054520 (2017); arXiv:1706.04573v3 [cond-mat.meshall] (2017).ADSCrossRefGoogle Scholar
  9. 9.
    C. Moore, T. D. Stanescu, and S. Tewari, “Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor–superconductor heterostructures,” Phys. Rev. B, 97, 165302 (2018); arXiv:1611.07058v1 [cond-mat.mes-hall] (2016).ADSCrossRefGoogle Scholar
  10. 10.
    D. Chevallier, P. Simon, and C. Bena, “From Andreev bound states to Majorana fermions in topological wires on superconducting substrates: A story of mutation,” Phys. Rev. B, 88, 165401 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. N. Demkov and V. N. Ostrovskii, Method of Zero-Range Potentials in Atomic Physics [in Russian], Leningrad Univ. Press, Leningrad (1975); English transl.: Zero-Range Potentials and Their Applications in Atomic Physics, Plenum, New York (1988).Google Scholar
  12. 12.
    S. K. Adhikari, M. Casas, A. Puente, A. Rigo, M. Fortes, M. A. Solis, M. de Llano, A. A. Valladares, and O. Rojo, “Linear to quadratic crossover of Cooper-pair dispersion relation,” Phys. C, 351, 341–348 (2001); arXiv:cond-mat/0008478v1 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Matsui, “Nucleon–trinucleon scattering with Yamaguchi potential,” Progr. Theor. Phys., 104, 981–993 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. P. Chuburin, “Existence of Majorana bound states near impurities in the case of a small superconducting gap,” Phys. E, 89, 130–133 (2017).CrossRefGoogle Scholar
  15. 15.
    D. Sticlet, B. Nijholt, and A. Akhmerov, “Robustness of Majorana bound states in the short-junction limit,” Phys. Rev. B, 95, 115421 (2017); arXiv:1609.00637v2 [cond-mat.mes-hall] (2016).ADSCrossRefGoogle Scholar
  16. 16.
    P. San-Jose, J. Cayao, E. Prada, and R. Aguado, “Majorana bound states from exceptional points in nontopological superconductors,” Sci. Rep., 6, 21427 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Udmurt Federal Research CenterUral Branch, RASIzhevskRussia

Personalised recommendations