Theoretical and Mathematical Physics

, Volume 197, Issue 2, pp 1615–1625 | Cite as

Integral Characteristics of Wave Packets in the Problem of the Evolution of A Wave Function on A One-Dimensional Lattice

  • V. N. Likhachov
  • G. A. VinogradovEmail author


We consider the quantum dynamics of charge transfer on a lattice in the tight-binding approximation and analytically calculate the integral characteristics of the wave packet propagating along the lattice. We focus on calculating the mean and root-mean-square displacements. We also obtain expressions for higher-order moments as series for squares of Bessel functions, which might be independently interesting.


quantum dynamics tight-binding approximation moments of distribution function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. E. Augustyn, J. C. Genereux, and J. K. Barton, “Distance-independent DNA charge transport across an adenine tract,” Angew. Chem. Internat. Ed., 46, 5731–5733 (2007).CrossRefGoogle Scholar
  2. 2.
    B. Elias, J. C. Genereux, and J. K. Barton, “Ping-pong electron transfer through DNA,” Angew. Chem. Internat. Ed., 47, 9067–9070 (2008).CrossRefGoogle Scholar
  3. 3.
    J. C. Genereux and J. K. Barton, “Mechanisms for DNA charge transport,” Chem. Rev., 110, 1642–1662 (2010).CrossRefGoogle Scholar
  4. 4.
    K. Kawai, H. Kodera, Y. Osakada, and T. Majima, “Sequence-independent and rapid long-range charge transfer through DNA,” Nature Chem., 1, 156–159 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    V. N. Likhachev, T. Yu. Astakhova, and G. A. Vinogradov, “‘Electron ping-pong’ on a one-dimensional lattice: Wave packet motion up to the first reflection,” Theor. Math. Phys., 175, 681–698 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V. N. Likhachev, O. I. Shevaleevskii, and G. A. Vinogradov, “Quantum dynamics of charge transfer on the one-dimensional lattice: Wave packet spreading and recurrence,” Chinese Phys. B, 25, 018708 (2016).CrossRefGoogle Scholar
  7. 7.
    V. A. Benderskii and E. I. Kats, “Propagating vibrational excitations in molecular chains,” JETP Lett., 94, 459–464 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    V. A. Benderskii and E. I. Kats, “Propagation of excitation in long 1D chains: Transition from regular quantum dynamics to stochastic dynamics,” JETP, 116, 1–14.Google Scholar
  9. 9.
    F. A. B. F. de Moura, R. A. Caetano, and B. Santos, “Dynamics of one electron in a nonlinear disordered chain,” J. Phys.: Condens. Matter, 24, 245401 (2012).ADSGoogle Scholar
  10. 10.
    F. Piéchon, “Anomalous diffusion properties of wave packets on quasiperiodic chains,” Phys. Rev. Lett., 76, 4372–4375 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    A. S. Pikovsky and D. L. Shepelyansky, “Destruction of Anderson localization by a weak nonlinearity,” Phys. Rev. Lett., 100, 094101 (2008); arXiv:0708.3315v1 [cond-mat.dis-nn] (2007).ADSCrossRefGoogle Scholar
  12. 12.
    S. Flach, D. O. Krimer, and Ch. Skokos, “Universal spreading of wave packets in disordered nonlinear systems,” Phys. Rev. Lett., 102, 024101 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    H. Hatami, C. Danieli, J. D. Bodyfelt, and S. Flach, “Quasiperiodic driving of Anderson localized waves in one dimension,” Phys. Rev. E, 93, 062205 (2016).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    B. Huckestein and R. Klesse, “Diffusion and multifractality at the metal–insulator transition,” Phil. Mag. B, 77, 1181–1187 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    G. S. Ng and T. Kottos, “Wavepacket dynamics of the nonlinear Harper model,” Phys. Rev. B, 75, 205120 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    R. Ketzmerick, K. Kruse, S. Kraut, and T. Geisel, “What determines the spreading of a wave packet?” Phys. Rev. Lett., 79, 1959–1962 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1966).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical Physics, RASMoscowRussia

Personalised recommendations