Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 2, pp 1611–1614 | Cite as

Renormalizability and Unitarity of the Englert–Broute–Higgs–Kibble Model

  • A. A. Slavnov
Article
  • 13 Downloads

Abstract

We show that the Englert–Broute–Higgs–Kibble model is renormalizable and unitary.

Keywords

Englert–Broute–Higgs–Kibble model renormalization of gauge-invariant theories spontaneous symmetry breaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons,” Phys. Lett., 13, 321–323 (1964).MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. W. Higgs, “Broken symmetries, massless particles, and gauge fields,” Phys. Lett., 12, 132–133 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    T. W. B. Kibble, “Symmetry breaking in non-Abelian gauge theories,” Phys. Rev., 155, 1554–1561 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    V. N. Gribov, “Quantization of non-Abelian gauge theories,” Nucl. Phys. B, 139, 1–19 (1978).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. A. Slavnov, “A Lorentz invariant formulation of the Yang–Mills theory with gauge invariant ghost field Lagrangian,” JHEP, 0808, 047 (2008); arXiv:0807.1795v1 [hep-th] (2008).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. A. Slavnov, “Lorentz-invariant quantization of the Yang–Mills theory without Gribov ambiguity,” Proc. Steklov Inst. Math., 272, 235–245 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Quadri and A. A. Slavnov, “Renormalization of the Yang–Mills theory in the ambiguity-free gauge,” JHEP, 1007, 087 (2010); arXiv:1002.2490v2 [hep-th] (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. Quadri and A. A. Slavnov, “Ambiguity-free formulation of the Higgs–Kibble model,” Theor. Math. Phys., 166, 291–302 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. A. Slavnov, “Nonperturbative quantization of models of massive non-Abelian gauge fields with spontaneously broken symmetry,” Theor. Math. Phys., 189, 1645–1650 (2016).CrossRefzbMATHGoogle Scholar
  10. 10.
    A. A. Slavnov, “New approach to the quantization of the Yang–Mills field,” Theor. Math. Phys., 183, 585–596 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. A. Slavnov, “A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory,” Theor. Math. Phys., 193, 1826–1833 (2017).CrossRefzbMATHGoogle Scholar
  12. 12.
    A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1988); English transl.: L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory (Frontiers Phys., Vol. 83), Addison-Wesley, Redwood City, Calif. (1991).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations