Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 2, pp 1592–1610 | Cite as

Artin Billiard: Exponential Decay of Correlation Functions

  • H. R. Poghosyan
  • H. M. Babujian
  • G. K. SavvidyEmail author
Article

Abstract

The hyperbolic Anosov C-systems have an exponential instability of their trajectories and as such represent the most natural chaotic dynamical systems. The C-systems defined on compact surfaces of the Lobachevsky plane of constant negative curvature are especially interesting. An example of such a system was introduced in a brilliant article published in 1924 by the mathematician Emil Artin. The dynamical system is defined on the fundamental region of the Lobachevsky plane, which is obtained by identifying points congruent with respect to the modular group, the discrete subgroup of the Lobachevsky plane isometries. The fundamental region in this case is a hyperbolic triangle. The geodesic trajectories of the non-Euclidean billiard are bounded to propagate on the fundamental hyperbolic triangle. Here, we present Artin’s results, calculate the correlation functions/observables defined on the phase space of the Artin billiard, and show that the correlation functions decay exponentially with time. We use the Artin symbolic dynamics, differential geometry, and the group theory methods of Gelfand and Fomin.

Keywords

Anosov C-system hyperbolic system Lobachevsky plane hyperbolic geodesic flow chaotic system Artin billiard correlation function automorphic function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Artin, “Ein mechanisches System mit quasiergodischen Bahnen,” Abh. Math. Sem. Univ. Hamburg, 3, 170–175 (1924).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Hadamard, “Les surfacesá courbures opposées et leur linges géodésiques,” J. Math. Pures Appl., 4, 27–73 (1898).zbMATHGoogle Scholar
  3. 3.
    G. A. Hedlund, “The dynamics of geodesic flow,” Bull. Amer. Math. Soc., 45, 241–246 (1939).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature,” Proc. Steklov Inst. Math., 90, 1–235 (1967).MathSciNetGoogle Scholar
  5. 5.
    R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lect. Notes Math., Vol. 470), Springer, Berlin (1975).CrossRefzbMATHGoogle Scholar
  6. 6.
    A. N. Kolmogorov, “A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces,” Proc. Steklov Inst. Math., 169, 97–102 (1986).zbMATHGoogle Scholar
  7. 7.
    A. N. Kolmogorov, “Entropy per unit time as a metric invariant of automorphisms,” Dokl. Akad. Nauk SSSR, 124, 754–755 (1959).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ya. G. Sinai, “On the concept of entropy for a dynamic system [in Russian],” Dokl. Akad. Nauk SSSR, 124, 768–771 (1959).MathSciNetzbMATHGoogle Scholar
  9. 9.
    D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley, Reading, Mass. (1978).zbMATHGoogle Scholar
  10. 10.
    E. Hopf, “Ergodic theory and the geodesic flow on surfaces of constant negative curvature,” Bull. Amer. Math. Soc., 77, 863–877 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    I. M. Gel’fand and S. V. Fomin, “Geodesic flows on manifolds of constant negative curvature,” Russ. Math. Surveys, 7, 118–137 (1952).MathSciNetGoogle Scholar
  12. 12.
    P. Collet, H. Epstein, and G. Gallavotti, “Perturbations of geodesic flows on surface of constant negative curvature and their mixing properties,” Commun. Math. Phys., 95, 61–112 (1984).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C. C. Moore, “Exponential decay of correlation coefficients for geodesic flows,” in: Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Math. Sci. Res. Inst. Publ., Vol. 6, C. C. Moore, ed.), Springer, New York (1987), pp. 163–181.CrossRefGoogle Scholar
  14. 14.
    N. S. Krylov, Works on the Foundation of Statistical Physics [in Russian], Acad. Sci. USSR Press, Moscow (1950); English transl., Princeton Univ. Press, Princeton, N. J. (1979).Google Scholar
  15. 15.
    E. Hopf, “Statistik der Lösungen geodätischer Probleme vom unstabilen Typus: II,” Math. Ann., 117, 590–608 (1940).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D. Dolgopyat, “On decay of correlations in Anosov flows,” Ann. of Math. (2), 147, 357–390 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    N. I. Chernov, “Markov approximations and decay of correlations for Anosov flows,” Ann. Math. (2), 147, 269–324 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G. K. Savvidy, “The Yang–Mills classical mechanics as a Kolmogorov K-system,” Phys. Lett. B, 130, 303–307 (1983).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. K. Savvidy, “Classical and quantum mechanics of non-abelian gauge fields,” Nucl. Phys. B, 246, 302–334 (1984).ADSCrossRefGoogle Scholar
  20. 20.
    G. K. Savvidy and N. G. Ter-Arutyunyan-Savvidy, “On the Monte Carlo simulation of physical systems,” J. Comput. Phys., 97, 566–572 (1991).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    K. G. Savvidy, “The MIXMAX random number generator,” Comput. Phys. Commun., 196, 161–165 (2015).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    G. K. Savvidy, “Anosov C-systems and random number generators,” Theor. Math. Phys., 188, 1155–1171 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    K. G. Savvidy and G. K. Savvidy, “Spectrum and entropy of C-systems MIXMAX random number generator,” Chaos Solitons Fractals, 91, 33–38 (2016); arXiv:1510.06274v3 [math.DS] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP, 1608, 106 (2016); arXiv: 1503.01409v1 [hep-th] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    H. Poincaré, “Théorie des groupes fuchsiens,” Acta Math., 1, 1–62 (1882).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    L. Fuchs, “Über eine Klasse von Funktionen mehrerer Variablen, welche durch Umkehrung der Integrale von Lösungen der linearen Differentialgleichungen mit rationalen Coeffizienten entstehen,” J. Reine Angew. Math., 89, 151–169 (1880).MathSciNetGoogle Scholar
  27. 27.
    C. Burstin, “Über eine spezielle Klasse reeller periodischer Funktionen,” Monatsh. Math. Phys., 26, 229–262 (1915).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig (1910).zbMATHGoogle Scholar
  29. 29.
    H. Poincaré, “Mémoire sur les fonctions fuchsiennes,” Acta Math., 1, 193–294 (1882).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    L. R. Ford, An Introduction to the Theory of Automorphic Functions, G. Bell and Sons, London (1915).zbMATHGoogle Scholar
  31. 31.
    M. Pollicott, “On the rate of mixing of Axiom A flows,” Invent. Math., 81, 413–426 (1985).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    G. K. Savvidy and K. G. Savvidy, “Exponential decay of correlations functions in MIXMAX generator of pseudorandom numbers,” Chaos Solitons Fractals, 107, 244–250 (2018).ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • H. R. Poghosyan
    • 1
  • H. M. Babujian
    • 1
  • G. K. Savvidy
    • 2
    Email author
  1. 1.National Science LaboratoryYerevanArmenia
  2. 2.Institute of Nuclear and Particle PhysicsNational Center for Scientific Research “Demokritos,”AthensGreece

Personalised recommendations