# Inverse Scattering Transform for the Nonlocal Reverse Space–Time Nonlinear Schrödinger Equation

- 39 Downloads

## Abstract

Nonlocal reverse space–time equations of the nonlinear Schrödinger (NLS) type were recently introduced. They were shown to be integrable infinite-dimensional dynamical systems, and the inverse scattering transform (IST) for rapidly decaying initial conditions was constructed. Here, we present the IST for the reverse space–time NLS equation with nonzero boundary conditions (NZBCs) at infinity. The NZBC problem is more complicated because the branching structure of the associated linear eigenfunctions is complicated. We analyze two cases, which correspond to two different values of the phase at infinity. We discuss special soliton solutions and find explicit one-soliton and two-soliton solutions. We also consider spatially dependent boundary conditions.

## Keywords

inverse scattering transform nonlocal RST NLS equation## Preview

Unable to display preview. Download preview PDF.

## References

- 1.D. J. Korteweg and G. de Vries, “XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,”
*Philos. Mag. Ser. 5*,**39**, 422–443 (1895).CrossRefzbMATHGoogle Scholar - 2.C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–deVries equation,”
*Phys. Rev. Lett.*,**19**, 1095–1097 (1967).ADSCrossRefzbMATHGoogle Scholar - 3.P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,”
*Commun. Pure Appl. Math.*,**21**, 467–490 (1968).MathSciNetCrossRefzbMATHGoogle Scholar - 4.V. F. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media,”
*JETP*,**34**, 62–69 (1971).ADSGoogle Scholar - 5.D. J. Benney and A. C. Newell, “The propagation of nonlinear wave envelopes,”
*J. Math. Phys.*,**46**, 133–139 (1967).MathSciNetCrossRefzbMATHGoogle Scholar - 6.M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Nonlinear-evolution equations of physical significance,”
*Phys. Rev. Lett.*,**31**, 125–127 (1973).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 7.M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for solving the sine-Gordon equation,”
*Phys. Rev. Lett.*,**30**, 1262–1264 (1973).ADSMathSciNetCrossRefGoogle Scholar - 8.M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform-fourier analysis for nonlinear problems,”
*Stud. Appl. Math.*,**53**, 249–315 (1974).MathSciNetCrossRefzbMATHGoogle Scholar - 9.M. J. Ablowitz and H. Segur,
*Solitons and the Inverse Scattering Transform*(SIAM Stud. Appl. Math., Vol. 4), Vol. 4, SIAM, Philadelphia (1981).CrossRefzbMATHGoogle Scholar - 10.V. E. Zakharov, S. P. Novikov, S. V. Manakov, and L. P. Pitaevskii,
*Theory of Solitons: The Inverse Scattering Method*[in Russian], Nauka, Moscow (1980) English transl.zbMATHGoogle Scholar - 10a.S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Plenum, New York (1984).Google Scholar
- 11.F. Calogero and A. Degasperis,
*Spectral Transform and Solitons*(Lect. Notes Computer Sci., Vol. 144), Vol. 1, Tools to Solve and Investigate Nonlinear Evolution Equations, North-Holland, Amsterdam (1982).zbMATHGoogle Scholar - 12.V. E. Zakharov and A. B. Shabat, “Interaction between solitons in a stable medium,”
*Sov. Phys. JETP*,**37**, 823–828 (1973).ADSGoogle Scholar - 13.L. A. Takhtajan and L. D. Faddeev,
*Hamiltonian Methods in the Theory of Solitons*[in Russian], Nauka, Moscow (1986); English transl.zbMATHGoogle Scholar - 13a.L. D. Faddeev and L. A. Takhtajan, Springer, Berlin (1987).Google Scholar
- 14.B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions,”
*J. Math. Phys.*,**47**, 063508 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 15.F. Demontis, B. Prinari, C. van der Mee, and F. Vitale, “The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions,”
*Stud. Appl. Math.*,**131**, 1–40 (2012).CrossRefzbMATHGoogle Scholar - 16.F. Demontis, B. Prinari, C. van der Mee, and F. Vitale, “The inverse scattering transform for the focusing nonlinear Schrödinger equations with asymmetric boundary conditions,”
*J. Math. Phys.*,**55**, 101505 (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 17.G. Biondini and G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions,”
*J. Math. Phys.*,**55**, 031506 (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 18.G. Biondini and D. Kraus, “Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions,”
*SIAM J. Math. Anal.*,**47**, 706–757 (2015).MathSciNetCrossRefzbMATHGoogle Scholar - 19.G. Biondini, G. Kovačič, and D. K. Kraus, “The focusing Manakov system with nonzero boundary conditions,”
*Nonlinearity*,**28**, 3101–3151 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 20.G. Biondini, D. K. Kraus, and B. Prinari, “The three component focusing non-linear Schrödinger equation with nonzero boundary conditions,”
*Commun. Math. Phys.*,**348**, 475–533 (2016).ADSCrossRefzbMATHGoogle Scholar - 21.M. Pichler and G. Bondini, “On the focusing non-linear Schrödinger equation with nonzero boundary conditions and double poles,”
*IMA J. Appl. Math.*,**82**, 131–151 (2017).MathSciNetCrossRefGoogle Scholar - 22.M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear equations,”
*Stud. Appl. Math.*,**139**, 7–59 (2016); arXiv:1610.02594v1 [nlin.SI] (2016).MathSciNetCrossRefzbMATHGoogle Scholar - 23.M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation,”
*Phys. Rev. Lett.*,**110**, 064105 (2013).ADSCrossRefGoogle Scholar - 24.M. J. Ablowitz and Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation,”
*Nonlinearity*,**29**, 915–946 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 25.A. S. Fokas, “Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation,”
*Nonlinearity*,**29**, 319–324 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 26.M. J. Ablowitz, X. D. Luo, and Z. H. Musslimani, “The inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions,”
*J. Math. Phys.*,**59**, 011501 (2018); arXiv: 1612.02726v1 [nlin.SI] (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 27.M. J. Ablowitz, B.-F. Feng, X.-D. Luo, and Z. H. Musslimani, “Reverse space–time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions,”
*Stud. Appl. Math.*, Online first DOI: 10.1111/sapm.12222 (2018); “Inverse scattering transform for the nonlocal reverse space–time sine-Gordon, sinh-Gordon, and nonlinear Schrödinger equations with nonzero boundary conditions,” arXiv:1703.02226v1 [math-ph] (2017).Google Scholar