Advertisement

Solar System Research

, Volume 53, Issue 4, pp 278–293 | Cite as

Numerical Modeling of the General Circulation of the Atmosphere of Titan at Equinox

  • I. V. MingalevEmail author
  • A. V. Rodin
  • K. G. Orlov
Article
  • 7 Downloads

Abstract

A new model of the general circulation of the atmosphere of Titan is discussed. This model is based on numerical grid integration of the complete equations of gas dynamics with a fine spatial resolution. The relaxation approximation is used to calculate the power of radiation heating and cooling the atmospheric gas. The results of simulation of the general atmospheric circulation of Titan at equinox with this model are presented and analyzed.

Keywords:

circulation of the atmosphere of Titan numerical modeling 

Notes

FUNDING

The work of I.V. Mingalev and K.G. Orlov was supported by the Russian Foundation for Basic Research, project no. 17-01-00100.

REFERENCES

  1. 1.
    Belotserkovskii, O.M., Kraginskii, L.M., and Oparin, A.M., Numerical simulation of 3D flows in stratified atmosphere caused by strong large-scale disturbances, Zh. Vychisl. Mat. Mat. Fiz., 2003, vol. 43, no. 11, pp. 1744–1758.zbMATHGoogle Scholar
  2. 2.
    Bird, M.K., Allison, M., Asmar, S.W., Atkinson, D.H., Avruch, I.M., Dutta-Roy, R., Dzierma, Y., Edenhofer, P., Folkner, W.M., Gurvits, L.I., Johnston, D.V., Plettemeier, D., Pogrebenko, S.V., Preston, R.A., and Tyler, G.L., The vertical profile of winds on Titan, Nature, 2005, vol. 438, pp. 800–802.ADSCrossRefGoogle Scholar
  3. 3.
    Chetverushkin, B.N., Mingalev, I.V., Orlov, K.G., Chechetkin, V.M., Mingalev, V.S., and Mingalev, O.V., Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth, Math. Models Comp. Simul., 2018, vol. 10, no. 2, pp. 176–185.CrossRefGoogle Scholar
  4. 4.
    Flasar, F.M., The dynamic meteorology of Titan, Planet. Space Sci., 1998, vol. 46, pp. 1125–1147.ADSCrossRefGoogle Scholar
  5. 5.
    Flasar, F.M., Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Kunde, V.G., Nixon, C.A., Bjoraker, G.L., Jennings, D.E., Romani, P.N., Simon-Miller, A.A., Bezard, B., Coustenis, A., Irwin, P.G.J., Teanby, N.A., Brasunas, J., et al., Titan’s atmospheric temperatures, winds, and composition, Science, 2005, vol. 308, no. 5724, pp. 975–978.ADSCrossRefGoogle Scholar
  6. 6.
    Golitsyn, G.S., Another look at atmospheric dynamics on Titan and some of its general consequences, Icarus, 1975, vol. 24, pp. 70–75.ADSCrossRefGoogle Scholar
  7. 7.
    Hourdin, F., Talagrand, O., and Sadourny, R., Numerical simulation of the general circulation of the atmosphere of Titan, Icarus, 1995, vol. 117, pp. 358–374.ADSCrossRefGoogle Scholar
  8. 8.
    Izakov, M.N., Venus express: the presence of turbulence in the mesosphere of Venus is confirmed, Sol. Syst. Res., 2010a, vol. 44, no. 2, pp. 87–95.ADSCrossRefGoogle Scholar
  9. 9.
    Izakov, M.N., Dissipation of buoyancy waves and turbulence in the atmosphere of Venus, Sol. Syst. Res., 2010b, vol. 44, no. 6, pp. 475–486.ADSCrossRefGoogle Scholar
  10. 10.
    Kolesnichenko, A.V. and Marov, M.Ya., Turbulentnost’ mnogokomponentnykh sred (Turbulence of Multicomponent Media), Moscow: Nauka, 1998.Google Scholar
  11. 11.
    Kostiuk, T., Fast, K.E., Livengood, T.A., Hewagama, T., Goldstein, J.J., Espenak, F., and Buhl, D., Direct measurement of winds on Titan, Geophys. Res. Lett., 2001, vol. 28, no. 12, pp. 2361–2364.ADSCrossRefGoogle Scholar
  12. 12.
    Kostiuk, T., Hewagama, T., Fast, K.E., Livengood, T.A., Annen, J., Buhl, D., Sonnabend, G., Schmulling, F., Delgado, J.D., and Achterberg, R., High spectral resolution infrared studies of Titan: Winds, temperature and composition, Planet. Space Sci., 2010, vol. 58, pp. 1715–1723.  https://doi.org/10.1016/2010.08.004 ADSCrossRefGoogle Scholar
  13. 13.
    Kostiuk, T., Livengood, T., Hewagama, T., Sonnabend, G., Fast, K.E., Murakawa, K., Tokunaga, A.T., Annen, J., Buhl, D., and Schmulling, F., Titan’s stratospheric zonal wind, temperature and ethane abundance a year prior to Huygens insertion, Geophys. Res. Lett., 2005, vol. 32, no. L22 205.  https://doi.org/10.1029/2005GL023897
  14. 14.
    Lebonnois, S., Burgalat, J., Rannou, P., and Charnay, B., Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM, Icarus, 2012, vol. 218, pp. 707–722.  https://doi.org/10.1016/j.icarus.2011.11.032 ADSCrossRefGoogle Scholar
  15. 15.
    Livengood, T.A., Kostiuk, T., Sonnabend, G., Annen, J.N., Fast, K.E., Tokunaga, A., Murakawa, K., Hewagama, T., Schmulling, F., and Schieder, R., Stratospheric zonal winds on Titan at the time of Huygens decent, J. Geophys. Res.: Planets, 2006, vol. 111, art. ID E11S90.  https://doi.org/10.1029/2005JE002669 ADSCrossRefGoogle Scholar
  16. 16.
    Lora, J.M., Lunine, J.I., and Russell, J.L., GCM simulations of Titan’s middle and lower atmosphere and comparison to observations, Icarus, 2015, vol. 250, pp. 367–377.CrossRefGoogle Scholar
  17. 17.
    Lorenz, R.D. Stiles, B.W., Aharonson, O., Lucas, A., Hayes, A.G., Kirk, R.L., Zebker, H.A., Turtle, E.P., Neish, C.D., Stofan, E.R., and Barnes, J.W., A global topographic map of Titan, Icarus, 2013, vol. 225, no. 1, pp. 516–528.CrossRefGoogle Scholar
  18. 18.
    Luz, D., Civeit, T., Courtin, T., Lebreton, J.-P., Gautier, D., Witasse, O., Kaufer, A., Ferr, F., Lara, L., Livengood, T., and Kostiuk, T., Characterization of zonal winds in the stratosphere of Titan with UVES. II. Observations coordinated with the Huygens probe entry, J. Geophys. Res.: Planets, 2006, vol. 111, art. ID E08S90.  https://doi.org/10.1029/2005JE002617 CrossRefGoogle Scholar
  19. 19.
    Mingalev, I.V. and Mingalev, V.S., General circulation model of the Earth lower and middle atmosphere under the given temperature distribution, Mat. Model., 2005, vol. 17, no. 5, pp. 24–40.zbMATHGoogle Scholar
  20. 20.
    Mingalev, I.V., Mingalev, V.S., Mingalev, O.V., Kazeminejad, B., Lammer, H., Biernat, H.K., Lichtenegger, H.I.M., Schwingenschuh, K., and Rucker, H.O., First simulation results of Titan’s atmosphere dynamics with a global 3-D non-hydrostatic circulation model, Ann. Geophys., 2006, vol. 24, no. 8, pp. 2115–2129.  https://doi.org/10.5194/angeo-24-2115-2006 ADSCrossRefGoogle Scholar
  21. 21.
    Mingalev, I.V., Mingalev, V.S., Mingalev, O.V., Kazeminejad, 7B., Lammer, H., Birnat, H.K., Lihteneger, H.I.M., Schvingenschu, K., and Ruker, H.O., Numerical simulation of circulation of the Titan’s atmosphere: interpretation of measurements of the Huygens probe, Cosm. Res., 2009, vol. 47, no. 2, pp. 114–125.ADSCrossRefGoogle Scholar
  22. 22.
    Mingalev, V.S., Mingalev, I.V., Mingalev, O.V., Oparin, A.M., and Orlov, K.G., Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid, Comput. Math. Math. Phys., 2010, vol. 50, no. 5, pp. 877–889.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mingalev, I.V., Rodin, A.V., and Orlov, K.G., A nonhydrostatic model of the global circulation of the atmosphere of Venus, Sol. Syst. Res., 2012, vol. 46, no. 4, pp. 263–277.ADSCrossRefGoogle Scholar
  24. 24.
    Mingalev, I.V., Rodin, A.V., and Orlov, K.G., Numerical simulations of the global circulation of the atmosphere of Venus: effects of surface relief and solar radiation heating, Sol. Syst. Res., 2015, vol. 49, no. 1, pp. 24–42.ADSCrossRefGoogle Scholar
  25. 25.
    Moreno, R., Marten, A., and Hidayat, T., Interferometric measurements of zonal winds on Titan, Astron. Astrophys., 2005, vol. 437, pp. 319.ADSCrossRefGoogle Scholar
  26. 26.
    Newmana, C.E., Lee, C., Lian, Y., Richardson, M.I., and Toigo, A.D., Stratospheric superrotation in the TitanWRF model, Icarus, 2011, vol. 213, pp. 636–654.ADSCrossRefGoogle Scholar
  27. 27.
    Obukhov, A.M., Turbulentnost’ i dinamika atmosfery (Turbulence and Dynamics of Atmosphere), Leningrad: Gidrometeoizdat, 1988.Google Scholar
  28. 28.
    Oparin, A.M., Numerical modeling of the problems related ti intensive development of hydrodynamic instabilities, in Novoe v chislennom modelirovanii: algoritmy, vychislitel’nyi eksperiment, rezul’taty (New in Numerical Modeling: Algorithms, Computational Experiment, and Results), Moscow: Nauka, 2000.Google Scholar
  29. 29.
    Tokano, T., Wind-induced equatorial bulge in Venus and Titan general circulation models: Implication for the simulation of superrotation, Geophys. Res. Lett., 2013, vol. 40, pp. 4538–4543.  https://doi.org/10.1002/grl.50841 ADSCrossRefGoogle Scholar
  30. 30.
    Tomasko, M.G., Archinal, B., Becker, T., Bezard, B., Bushroe, M., Combes, M., Cook, D., Coustenis, A., de Bergh, C., Dafoe, L.E., Doose, L., Doute, S., Eibl, A., Engel, S., Gliem, F., et al., Rain, winds and haze during the Huygens probe’s descent to Titan’s surface, Nature, 2005, vol. 438, pp. 765–778.ADSCrossRefGoogle Scholar
  31. 31.
    Yelle, R.V., Lellowch, E., Gautier, D., and Strobel, D.F., The Yelle Titan atmosphere engineering models, Proc. ESA Conf. “Huygens: Science, Payload and Mission,” Paris: Eur. Space Agency, 1997, no. ESASP-1177, pp. 243–256.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Polar Geophysical Institute, Russian Academy of SciencesApatityRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Space Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations