Solar System Research

, Volume 52, Issue 2, pp 153–167 | Cite as

Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun



We have performed the calculations of the orbital evolution of dust particles from volcanic glass (p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting–Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0–7.6 solar radii for standard particles of the zodiacal cloud and 9.1–9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.


F-corona near-solar dust sublimation (evaporation) zodiacal cloud dust dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aimanov, A.K., Aimanova, G.K., and Shestakova, L.I., Radial velocities in the F-corona on July 11, 1991, Astron. Lett., 1995, vol. 21, no. 2, pp. 196–198.Google Scholar
  2. Beavers, W.I. and Eitter, J.J., Radial velocity discriminated coronal photometric measurements at the July 11, 1991 total eclipse, Planet. Space Sci., 2009, vol. 57, pp. 332–343.CrossRefGoogle Scholar
  3. Belton, M.J.S., Dynamics of interplanetary dust, Science, 1966, vol. 151, pp. 35–44.CrossRefGoogle Scholar
  4. Blackwell, D.E., A study of the outer corona from a high altitude aircraft at the eclipse of 1954 June 30. I. Observational data, Mon. Not. R. Astron. Soc., 1955, vol. 115, pp. 629.CrossRefGoogle Scholar
  5. Boren, C.F. and Hafmen, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.Google Scholar
  6. Burns, J.A., Lamy, P.L., and Soter, S., Radiation forces on small particles in the Solar system, Icarus, 1979, vol. 40, pp. 1–48.CrossRefGoogle Scholar
  7. Dorschner, J., Begemann, B., Henning, Th., Jager, C., and Mutschke, H., Steps toward interstellar silicate mineralogy II. Study of Mg–Fe-silicate glasses of variable composition, Astron. Astrophys., 1995, vol. 300, pp. 503–520.Google Scholar
  8. Draine, B.T., Tabulated optical properties of graphite and silicate grains, Astrophys. J., 1985, vol. 57, suppl., pp. 587–594.CrossRefGoogle Scholar
  9. Hodapp, K.-W., MacQueen, R.M., and Hall, D.N.B., A search during the 1991 solar eclipse for the infrared signature of circumsolar dust, Nature, 1992, vol. 355, pp. 707–710.CrossRefGoogle Scholar
  10. Ingham, M.F., The nature and distribution of the interplanetary dust, Mon. Not. R. Astron. Soc., 1961, vol. 122, pp. 157–176.CrossRefGoogle Scholar
  11. Kaiser, C.B., The thermal emission of the F Corona, Astrophys. J., 1970, vol. 159, pp. 77–92.CrossRefGoogle Scholar
  12. Kelsall, T., Weiland, J.L., Franz, B.A. Reach, W.T., Arendt, R.G., Dwek, E., Freudenreich, H.T., Hauser, M.G., Moseley, S.H., and Odegard, N.P., The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud, Astrophys. J., 1998, vol. 508, pp. 44–73.CrossRefGoogle Scholar
  13. Kobayashi, H., Kimura, H., Watanabe, S., Yamamoto, T., and Müller, S., Sublimation temperature of circumstellar dust particles and its importance for dust ring formation, Earth, Planets Space, 2011, vol. 63, pp. 1067–1075.CrossRefGoogle Scholar
  14. Lamy, P.L., The dynamics of circum-solar dust grains, Astron. Astrophys., 1974a, vol. 33, pp. 191–194.Google Scholar
  15. Lamy, P.L., Interaction of interplanetary dust grains with the solar radiation field, Astron. Astrophys., 1974b, vol. 35, pp. 197–207.Google Scholar
  16. Lamy, P.L., Optical properties of silicates in the far ultraviolet, Icarus, 1978, vol. 34, pp. 68–75.CrossRefGoogle Scholar
  17. Lamy, P.L., Kuhn, J.R., Lin, H., Koutchmy, S., and Smartt, R.N., No evidence of a circumsolar dust ring from infrared observations of the 1991 solar eclipse, Science, 1992, vol. 257, pp. 1377–1380.CrossRefGoogle Scholar
  18. Leinert, C., Zodiacal light—a measure of the interplanetary environment, Space Sci. Rev., 1975, vol. 18, pp. 281–339.CrossRefGoogle Scholar
  19. Lena, P., Hall, D., Soufflot, A., and Viala, Y., The thermal emission of the dust corona, during the eclipse of June 30, 1973. II–Photometric and spectral observations, Astron. Astrophys., 1974, vol. 37, pp. 81–86.Google Scholar
  20. MacQween, R.M., Infrared observation of the outer solar corona, Astrophys. J., 1968, vol. 154, pp. 1059–1076.CrossRefGoogle Scholar
  21. Makarov, E.A., Kharitonov, A.V., and Kazachevskaya, T.V., Potok solnechnogo izlucheniya (The Flux of Solar Radiation), Moscow: Nauka, 1991.Google Scholar
  22. Mann, I. and MacQueen, R.M., The solar F-corona at 2.12 pin: calculations of near-solar dust in comparison to 1991 eclipse observations, Astron. Astrophys., 1993, vol. 275, pp. 293–297.Google Scholar
  23. Masafumi, M. and Munezo, S., Polarization efficiency and phase function, calculated on the basis of the Mie theory, Sci. Rep. Tohoku Univ., Ser. 8, 1985, vol. 6, no. 1, pp. 11–48.Google Scholar
  24. Mukai, T. and Yamamoto, T., A model of the circumsolar dust cloud, Publ. Astron. Soc. Jpn., 1979, vol. 31, pp. 585–596.Google Scholar
  25. Mukai, T., Yamamoto, T., Hasegawa, A. Fujiwara, A., and Koike, C., On the circumsolar grain materials, Publ. Astron. Soc. Jpn., 1974, vol. 26, pp. 445–458.Google Scholar
  26. Pollack, J.B., Toon, O.B., and Khare, B.N., Optical properties of some terrestrial rocks and glasses, Icarus, 1973, vol. 19, pp. 372–389.CrossRefGoogle Scholar
  27. Peterson, A.W., Experimental detection of thermal radiation from interplanetary dust, Astrophys. J., 1967, vol. 148, pp. L37–L39.CrossRefGoogle Scholar
  28. Reach, W.T., Franz, B.A., and Weiland, J.L., The threedimensional structure of the zodiacal dust bands, Icarus, 1997, vol. 127, pp. 461–484.CrossRefGoogle Scholar
  29. Roser, S. and Staude, H.J., The Zodiacal light from 1500 Å to 60 micron, Astron. Astrophys., 1978, vol. 67, pp. 381–394.Google Scholar
  30. Shcheglov, P.V., Shestakova, L.I., and Ajmanov, A.K., Results of interferometric observations of the F-corona radial velocity field between 3 and 7 solar radii, Astron. Astrophys., 1987, vol. 173, pp. 383–388.Google Scholar
  31. Shestakova, L.I., Interpretation of F-corona radial velocity observations, Astron. Astrophys., 1987, vol. 175, pp. 289–291.Google Scholar
  32. Shestakova, L.I. and Demchenko, B.I., Results of observations of the dust distribution in the F-corona of the Sun, Sol. Syst. Res., 2016, vol. 50, no. 2, pp. 143–160.CrossRefGoogle Scholar
  33. Shestakova, L.I. and Tambovtseva, L.V., Dynamics of dust grains near the Sun, Astron. Astrophys., 1995, vol. 8, pp. 59–81.Google Scholar
  34. Shestakova, L.I., Rspaev, F.K., Minasyants, G.S., and Dubovitskij, A.I., The observation of total solar eclipse on March 29, 2006 in Kazakhstan, Odessa Astron. Publ., 2007, vol. 20, pp. 203–204.Google Scholar
  35. Shestakova, L.I., Demchenko, B.I., Rspaev, F.K., Minasyants, G.S., and Dubovitskii, A.I., Observation of the radial velocities of dust in the F-corona during a total solar eclipse on August 1, 2008, Izv. Akad. Nauk Resp. Kazakh., Ser. Fiz.-Matem., 2009, no. 4, pp. 97–104.Google Scholar
  36. Veselovskii, I.S., Solar wind and heliospheric magnetic field, in Model’ kosmosa. Tom 1. Fizicheskie usloviya v kosmicheskom prostranstve (Space Model, Vol. 1: Physical Conditions in the Space), Panasyuk, M.I. and Novikov, L.S., Eds., Moscow: Universitet, 2007, pp. 314–359.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Fesenkov Astrophysical InstituteAlmatyKazakhstan

Personalised recommendations