Siberian Mathematical Journal

, Volume 60, Issue 1, pp 178–184 | Cite as

Periodic Groups Whose All Involutions are Odd Transpositions

  • E. JabaraEmail author
  • A. ZakaviEmail author


We prove the local finiteness of some periodic groups generated by odd transpositions. As a consequence of our results we will show that the Suzuki simple groups Sz(22m+1) are recognizable by their spectrum in the class of periodic groups without subgroups isomorphic to D8, the dihedral group of order 8.


spectrum of a group recognizability Suzuki simple groups involution odd transposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grechkoseeva M. A., Shi W., and Vasilev A. V., “Recognition by spectrum for finite simple groups of Lie type,” Front. Math. China, vol. 3, No. 2, 275–285 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Mazurov V. D., “On recognizability of finite groups by spectrum,” in: Proc. Int. Conf. Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, 418–421.Google Scholar
  3. 3.
    Vasilev A. V., Grechkoseeva M. A., and Mazurov V. D., “Characterization of the finite simple groups by spectrum and order,” Algebra and Logic, vol. 48, No. 6, 385–409 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Mazurov V. D., “Infinite groups with Abelian centralizers of involutions,” Algebra and Logic, vol. 39, No. 1, 42–49 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Shi W. J., “A characterization of Suzuki’s simple groups,” Proc. Amer. Math. Soc., vol. 114, No. 3, 589–591 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aschbacher M., 3–Transposition Groups, Camb. Univ. Press, Cambridge (1997) (Camb. Tracts Math.; vol. 124).zbMATHGoogle Scholar
  7. 7.
    Aschbacher M., “On finite groups generated by odd transpositions. I,” Math. Z., Bd 127, 45–56 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Aschbacher M., “On finite groups generated by odd transpositions. II, III, IV,” J. Algebra, vol. 26, II: 451–459; III: 460–478; IV: 479–491 (1973).Google Scholar
  9. 9.
    Timmesfeld F. G., “Groups generated by k–transvections,” Invent. Math., vol. 100, No. 1, 167–206 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Robinson D. J. S., A Course in the Theory of Groups. 2nd ed., Springer–Verlag, New York (1996) (Grad. Texts Math.; vol. 80).CrossRefGoogle Scholar
  11. 11.
    Suzuki M., “Finite groups with nilpotent centralizers,” Trans. Amer. Math. Soc., vol. 99, 425–470 (1961).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Costantini M. and Jabara E., “On locally finite Cpp–groups,” Israel J. Math., vol. 212, No. 1, 123–137 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shunkov V. P., “On periodic groups with an almost regular involution,” Algebra and Logic, vol. 11, No. 4, 260–272 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gorenstein D., Finite Groups. 2nd ed., Chelsea Publ. Co., New York (1980).zbMATHGoogle Scholar
  15. 15.
    Dixon J. D. and Mortimer B., Permutation Groups, Springer–Verlag, New York (1996) (Grad. Texts Math.; vol. 163).CrossRefzbMATHGoogle Scholar
  16. 16.
    Higman G., “Suzuki 2–groups,” Illinois J. Math., vol. 7, 79–96 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gupta N. D. and Mazurov V. D., “On groups with small orders of elements,” Bull. Austral. Math. Soc., vol. 60, No. 2, 197–205 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jabara E., “Fixed point free actions of groups of exponent 5,” J. Aust. Math. Soc., vol. 77, No. 3, 297–304 (2004).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Philosophy and Cultural HeritageCa’ Foscari University of VeniceVeniceItaly
  2. 2.Department of MathematicsUniversity of IsfahanIsfahanIran
  3. 3.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations