Advertisement

Siberian Mathematical Journal

, Volume 60, Issue 1, pp 124–139 | Cite as

On Recognizability of PSU3(q) by the Orders of Maximal Abelian Subgroups

  • Z. MomenEmail author
  • B. KhosraviEmail author
Article
  • 2 Downloads

Abstract

Li and Chen in 2012 proved that the simple group A1(pn) is uniquely determined by the set of orders of its maximal abelian subgroups. Later the authors proved that if L = A2(q), where q is not a Mersenne prime, then every finite group with the same orders of maximal abelian subgroups as L is isomorphic to L or an extension of L by a subgroup of the outer automorphism group of L. In this paper, we prove that if L = PSU3(q), where q is not a Fermat prime, then every finite group with the same set of orders of maximal abelian subgroups as L is an almost simple group with socle PSU3(q).

Keywords

simple group maximal abelian subgroup characterization projective special unitary group prime graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhlaghi Z., Khosravi B., and Khatami M., “Characterization by prime graph of PGL(2, p k) where p and k > 1 are odd,” Int. J. Algebra Comput., vol. 20, No. 7, 847–873 (2010).CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen G., “Characterization of alternating groups by the set of orders of maximal abelian subgroups,” Sib. Math. J., vol. 47, No. 3, 594–596 (2006).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Han Z., Chen G., and Guo X., “A characterization theorem of sporadic simple groups,” Sib. Math. J., vol. 49, No. 6, 1138–1146 (2008).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Khosravi B., “A characterization of the automorphism groups of sporadic groups by the set of orders of maximal abelian subgroups,” Kumamoto. J. Math., vol. 22, 17–34 (2009).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Wang L., Characterization of Some Classes of Finite Simple Groups, Thes. Master of Science, Southwest China Normal University (2000).Google Scholar
  6. 6.
    Wang L., “A new characterization of K3–group,” Northeast. Math. J., vol. 17, No. 2, 205–209 (2001).MathSciNetGoogle Scholar
  7. 7.
    Li L. and Chen G., “A new characterization of the simple group A 1(p n),” Sib. Math. J., vol. 53, No. 2, 243–247 (2012).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Momen Z. and Khosravi B., “Groups with the same orders of maximal abelian subgroups as A2(q),” Monatsh. Math., vol. 174, 285–303 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Momen Z. and Khosravi B., “Quasirecognition of E 6(q) by the orders of maximal abelian subgroups,” J. Algebra Appl., vol. 16, No. 2, 1850122 (2018).CrossRefzbMATHGoogle Scholar
  10. 10.
    Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford (1985).zbMATHGoogle Scholar
  11. 11.
    Mazurov V. D., “Recognition of finite simple groups S4(q) by their element orders,” Algebra and Logic, vol. 41, No. 2, 93–110 (2002).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mazurov V. D., Xu M. C., and Cao H. P., “Recognition of finite simple groups L 3(2m) and U 3(2m) by their element orders,” Algebra and Logic, vol. 39, No. 5, 324–334 (2000).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Williams J. S., “Prime graph components of finite groups,” J. Algebra, vol. 69, No. 2, 487–513 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chen G. Y., “Further reflections on Thompson’s conjecture,” J. Algebra, vol. 218, No. 1, 276–285 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Passman D. S., Permutation Groups, Benjamin, W. A., New York (1968).zbMATHGoogle Scholar
  16. 16.
    Chen G. Y., “A new characterization of sporadic simple groups,” Algebra Colloq., vol. 3, No. 1, 49–58 (1996).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Malle G. and Testerman D., Linear Algebraic Groups and Finite Groups of Lie Type, Camb. Univ. Press, New York (2011).CrossRefzbMATHGoogle Scholar
  18. 18.
    Crescenzo P., “A diophantine equation which arises in the theory of finite groups,” Adv. Math., vol. 17, 25–29 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zsigmondy K., “Zur theorie der potenzreste,” Monatsh. Math. Phys., vol. 3, No. 1, 265–284 (1892).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory. 2nd ed., Springer–Verlag, New York (1990).CrossRefzbMATHGoogle Scholar
  21. 21.
    Vasilev A. V. and Vdovin E. P., “An adjacency criterion for the prime graph of a finite simple group,” Algebra and Logic, vol. 44, No. 6, 381–406 (2005).MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vasilev A. V. and Vdovin E. P., “Cocliques of maximal size in the prime graph of a finite simple group,” Algebra and Logic, vol. 50, No. 4, 291–322 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kondratev A. S. and Mazurov V. D., “Recognition of alternating groups of prime degree from their element orders,” Sib. Math. J., vol. 41, No. 2, 294–302 (2000).CrossRefGoogle Scholar
  24. 24.
    Buturlakin A. A., “Spectra of finite linear and unitary groups,” Algebra and Logic, vol. 47, No. 2, 91–99 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Blackburn N. and Huppert B., Finite Groups. III, Springer–Verlag, Berlin (1982).zbMATHGoogle Scholar
  26. 26.
    Vasilev A. V. and Staroletov A. M., “Recognizability of groups G 2(q) by spectrum,” Algebra and Logic, vol. 52, No. 1, 1–14 (2013).MathSciNetCrossRefGoogle Scholar
  27. 27.
    Buturlakin A. A., “Spectra of finite symplectic and orthogonal groups,” Sib. Adv. Math., vol. 21, No. 3, 176–210 (2011).MathSciNetCrossRefGoogle Scholar
  28. 28.
    Stensholt E., “Certain embeddings among finite groups of Lie type,” J. Algebra, vol. 53, 136–187 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bugeaud Y., Cao Z., and Mignotte M., “On simple K 4–groups,” J. Algebra, vol. 241, 658–668 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Iranmanesh A., Khosravi B., and Alavi S. H., “A characterization of PSU3(q) for q > 5,” Southeast Asian Bull. Math., vol. 26, 33–44 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gorenstein D., Lyons R., and Solomon R., The Classification of the Finite Simple Groups. Number 3, Amer. Math. Soc., Providence (1997).CrossRefzbMATHGoogle Scholar
  32. 32.
    King O. H., “The subgroup structure of finite classical groups in terms of geometric configurations,” in: Surv. Comb., London Math. Soc., 2005) (Lect. Note Ser.; vol. 327, 29–56.Google Scholar
  33. 33.
    Lucido M. S., “Prime graph components of finite almost simple groups,” Rend. Sem. Mat. Univ. Padova, vol. 102, 1–14 (1999).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pure Mathematics, Faculty of Mathematics and Computer ScienceAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations