Siberian Mathematical Journal

, Volume 60, Issue 1, pp 89–92 | Cite as

On One Class of Linear Operators in L2

  • V. B. KorotkovEmail author


We introduce the class B0 of linear operators in L2 satisfying the generalized von Neumann condition. Various sufficient conditions are established for the membership of operators in the class B0. Linear functional equations of the first and second kind in L2 with operators of class B0 are considered.


closable operator limit spectrum generalized von Neumann condition linear functional equation of the first or second kind integral equation of the first or second kind 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Von Neumann J., “Charakterisierung des Spektrums eines Integraloperators,” Actual. Sci. Ind. Paris, no. 229, 38–55 (1935).Google Scholar
  2. 2.
    Korotkov V. B., “Characteristic properties of integral operators with kernels of Carleman type,” Sib. Math. J., vol. 11, No. 1, 84–104 (1970).CrossRefzbMATHGoogle Scholar
  3. 3.
    Korotkov V. B., “Classification and characteristic properties of Carleman operators,” Dokl. Akad. Nauk SSSR, vol. 190, No. 6, 1274–1277 (1970).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Weidmann J., “Carlemanoperatoren,” Manuscripta Math., vol. 2, No. 1, 1–38 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kato T., Perturbation Theory for Linear Operators, Springer–Verlag, Berlin etc. (1995).CrossRefzbMATHGoogle Scholar
  6. 6.
    Korotkov V. B., Integral Operators [Russian], Nauka, Novosibirsk (1983).zbMATHGoogle Scholar
  7. 7.
    Korotkov V. B., “On partially measure compact unbounded linear operators on L2,” Vladikavkaz. Mat. Zh., vol. 18, No. 1, 36–41 (2016).MathSciNetGoogle Scholar
  8. 8.
    Korotkov V. B., “Integral equations of the third kind with unbounded operators,” Sib. Math. J., vol. 58, No. 2, 255–263 (2017).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations