Russian Metallurgy (Metally)

, Volume 2019, Issue 13, pp 1389–1394 | Cite as

Analysis of the Prospects of Ultrajet Diagnostics for Estimating the Wear Resistance of Bimetallic Tool

  • Li Syueyan’
  • V. S. Semashko
  • A. L. GalinovskiiEmail author
  • V. D. Belov
  • M. I. Abashin


Ultrajet diagnostics is used to analyze bimetallic knives for rotary crushers, and a polymer powder is introduced in a jet to imitate the operating conditions of the equipment. The correlation between the cavern depth formed during ultrajet action on a knife and the geometric parameters of the wear of its cutting edge is shown to be high.


polymer composite material recycling bimetal ultrajet diagnostics imitation action rotary crusher 



This work was performed in terms of a grant of the President of the Russian Federation for leading scientific schools (project no. NSh-3778.2018.8) and was supported by the Russian Foundation for Basic Research (project no. 18-29-18081).


  1. 1.
    M. Mohammadi, S.-L. Jämsä-Jounela, and I. Harjunkoski, “Optimal planning of municipal solid waste management systems in an integrated supply chain network,” Comp. Chem. Eng., No. 123, 155–169 (2019).CrossRefGoogle Scholar
  2. 2.
    G. V. B. Ferreira, M. Barletta, and A. R. A. Lima, “Use of estuarine resources by top predator fishes. How do ecological patterns affect rates of contamination by microplastics?” Sci.Total Env., No. 655, 292–304 (2019).CrossRefGoogle Scholar
  3. 3.
    M. Okan, H. M. Aydin, and M. Barsbay, “Current approaches to waste polymer utilization and minimization: a review,” J. Chem. Techn. Biotechn., No. 94 (1), 8–21 (2019).CrossRefGoogle Scholar
  4. 4.
    P. D. Sidorenko and I. Ya. Karpes’yo, “Composite utilizaiton: problemtaic aspects and promising solutions,” Komposit. Mir, No. 2 (77), 54–58 (2018).Google Scholar
  5. 5.
    V. Lahtela, M. Hyvärinen, and T. Kärki, “Composition of plastic fractions in waste streams: toward more efficient recycling and utilization,” Polymers, No. 11 (1), 69 (2019).CrossRefGoogle Scholar
  6. 6.
    Ya. I. Reutova, “Improvement of the design of a rotary crusher,” Vestn. Bogorod. Gos. Tekhn. Univ, No. 4, 136–139 (2016).Google Scholar
  7. 7.
    S. Huysveld, S. Hubo, K. Ragaert, and J. Dewulf, “Advancing circular economy benefit indicators and application on open-loop recycling of mixed and contaminated plastic waste fractions,” J. Cleaner Prod., No. 211, 1–13 (2019).CrossRefGoogle Scholar
  8. 8.
    S. Barannikova, Y. Li, and L. Zuev, “Research of the plastic deformation localization of bimetal,” Metalurgija, No. 57 (4), 275–278 (2018).Google Scholar
  9. 9.
    S. V. Hainsworth, R. J. Delaney, and G. N. Rutty, “How sharp is sharp? Towards quantification of the sharpness and penetration ability of kitchen knives used in stabbings,” Int. J. Legal Medicine, No. 122 (4), 281–291 (2008).CrossRefGoogle Scholar
  10. 10.
    W. Konig and P. Grab, “Quality definition and assessment in drilling of fibre reinforced thermosets,” Annal CIRP 38 (1), 119–124 (1989).CrossRefGoogle Scholar
  11. 11.
    K. Sakuma and M. Seto, “Tool wear in cutting glass-fibre-reinforced-plastics (the relation between fibre orientation and tool wear),” Bul. JSME 26 (218), 1420–1427 (1983).CrossRefGoogle Scholar
  12. 12.
    N. Bhatnagar, N. Ramakrishnan, N. K. Naik, and R. Komanduri, “On the machining of fibre reinforced plastic (FRP) composite laminates,” Int. J. Machine Tool Manuf., No. 35 (5), 701–716 (1995).CrossRefGoogle Scholar
  13. 13.
    K. Palanikumar, L. Karunamoorthy, and R. Karthikeyan, “Optimal machining parameters for achieving minimal tool wear in turning of GFRP composites,” Int. J. Manuf. Sci. Prod., No. 6 (3), 119–128 (2004).Google Scholar
  14. 14.
    S. V. Bochkarev, A. I. Tsaplin, A. L. Galinovskii, M. I. Abashin, and A. A. Barzov, “Ultra-Jet Diagnosis of Heat Treated Material Microstructure,” Metal Sci. Heat Treat., No. 59 (5, 6), 384–388 (2017).CrossRefGoogle Scholar
  15. 15.
    M. I. Abashin, A. A. Barzov, S. V. Bochkarev, A. L. Galinovsky, and B. G. Maslov, “Using ultrastream diagnostics for evaluating the quality of welded joints,” Weld. Int., No. 29 (9), 730–733 (2015).CrossRefGoogle Scholar
  16. 16.
    M. I. Abashin, A. A. Barzov, and A. L. Galinovskii, “Analysis of the physicochemical features of ultra-jet diagnosis,” Vestn. Mosk. Gos. Tekhn. Univ., No. 6, 7 (2012).Google Scholar
  17. 17.
    A. V. Alifanov, A. M. Milyukova, and V. V. Tsuran, “Development of import-replacing technologies of production of chipping knives and their wide-scale tests,” Trudy BGTU, No. 2 (175), 280–284 (2015).Google Scholar
  18. 18.
    Yu. P. Savinov, N. M. Chernov, and K. A. Medvedev, in Layered Composite Materials (Gos. Tekhn. Univ., Volgograd, 2004), pp. 56–57.Google Scholar
  19. 19.
    “Technology of production of composite cutting tool,” Tekhn. Metallov, No. 10, 23–27 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Li Syueyan’
    • 1
  • V. S. Semashko
    • 2
  • A. L. Galinovskii
    • 1
    Email author
  • V. D. Belov
    • 1
  • M. I. Abashin
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Research Institute of Pulsed Processes with Pilot ProductionMinskBelarus

Personalised recommendations