Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 13, pp 1351–1356 | Cite as

Development of a Technique to Simulate the Injection Molding of Metallic-Powder-Filled Polymers

  • A. B. Semenov
  • A. A. KutsbakhEmail author
  • A. N. Muranov
  • B. I. Semenov
POWDER METALLURGY TECHNOLOGIES

Abstract

Apart from subtractive machining technologies, additive and net-shape replication technologies are being developed and hybrid technologies appear. In particular, PIM (MIM, CIM) technologies, which belong to both powder metallurgy and casting, have been formed. As in other hi-tech production processes, the mathematical simulation of injection molding process is widely used in PIM technology to produce high-quality products, to estimate design and technical solutions, and to avoid the expensive trial-and-error method.

Keywords:

thixotropy materials with thixotropic properties polymer–powder compositions PIM technology injection casting suspension flow numerical simulation 

Notes

REFERENCES

  1. 1.
    A. B. Semenov, A. E. Gavrilenko, and B. I. Semenov, “Next-generation casting technologies and their adaptation and development in Russia: I. At the beginning of a new technological paradigm,” Tekhnol. Metallov, No. 4, 13–25 (2016).Google Scholar
  2. 2.
    A. B. Semenov, A. N. Muranov, A. A. Kutsbakh, and B. I. Semenov, “Injection casting of structured multiphase materials,” Vestn. RUDN: Inzh. Issledov. 18 (4), 407–425 (2017).Google Scholar
  3. 3.
    Handbook of Metal Injection Molding, Ed. by D. F. Heaney (Woodhead Publishing Limited, 2012).Google Scholar
  4. 4.
    Dr. M. Thornagel, “MIM-simulation: a virtual study on phase separation,” in Proceedings of Conference on Euro PM2009—Powder Injection Moulding—Quality & Simulation (2009).Google Scholar
  5. 5.
    T. Barriere, J. C. Gelin, and B. Liu, “Improving mould design and injection parameters in metal injection moulding by accurate 3D finite element simulation,” J. Mater. Proc. Techn. 125–126, 518–524 (2002).CrossRefGoogle Scholar
  6. 6.
    W. Fang, X. B. He, R. J. Zhang, X. M. You, and X. H. Qu, “Effects of particle characteristics on homogeneity of green bodies in powder injection moulding,” Powder Metall. 57 (4), 274–282 (2014).CrossRefGoogle Scholar
  7. 7.
    S. K. Samanta, H. Chattopadhyay, and M. M. Godkhindi, “Modeling the powder–binder separation in injection stage of PIM,” Prog. Comp. Fluid Dynamics 11 (5), 292–304 (2011).CrossRefGoogle Scholar
  8. 8.
    V. V. Bilovol, “Mould filling simulations during powder injection moulding,” Philosophical Dissertation (Delft, 2003).Google Scholar
  9. 9.
    N. A. Patankar and H. H. Hu, “Rheology of a suspension of particles in viscoelastic fluids,” J. Non-Newton. Fluid Mechan. 96 (3), 427–443 (2001).Google Scholar
  10. 10.
    P. R. Nott, E. Guazzelli, and O. Pouliquen, “The suspension balance model revisited,” Phys. Fluids 23 (4), 13 (2011).CrossRefGoogle Scholar
  11. 11.
    Autodesk Knowledge Network. Suspension Balance Model (Autodesk Knowledge Network, 2018). http://help.autodesk.com/view/MFIA/2017/ENU/?guid=GUID-BB1D 3AA2-5D2E- 4C97-8174-33F9F11990AF. Cited May 5, 2018.Google Scholar
  12. 12.
    S. Ahn, S. T. Chung, S. V. Atre, S. J. Park, and R. M. German, “Integrated filling, packing and cooling CAE analysis of powder injection moulding parts,” Powder Metallurgy 51 (4), 318–326 (2008).CrossRefGoogle Scholar
  13. 13.
    T. G. Kang, S. Ahn, S. H. Chung, T. Chung, Y. S. Kwon, S. J. Park, and R. M. German, Modeling and simulation of metal injection molding (MIM), Ed. by D. F. Heaney (Woodhead Publishing, 2012), pp. 197–236.Google Scholar
  14. 14.
    S. Ahn, S. T. Chung, S. J. Park, and R. M. German, “Simulation tool for powder injection molding and its applications,” PIM Int. 3 (4), 64–69 (2009).Google Scholar
  15. 15.
    C. Kukla, W. Friesenblchler, I. Duretek, and M. Thornagel, “New insights into feedstock behaviour and injection moulding simulation for PIM,” in Proceedings of Conference Powder Injection Moulding Euro PM2008 (2008), pp. 287–392.Google Scholar
  16. 16.
    Y. Thomas, E. Baril, F. Ilinca, and J. F. Hetu, “Development of titanium dental implant by MIM: experiments and simulation,” in Adv.Powder Metallurgy & Particulate Mater (2009), pp. 4–94.Google Scholar
  17. 17.
    D. F. Heaney, Design for metal injection molding (MIM), Ed. by D. F. Heaney (Woodhead Publishing, 2012), pp. 29–49.CrossRefGoogle Scholar
  18. 18.
    R. M. German, Designing for Metal Injection Moulding: A Guide for Designers and End-Users (Powder Injection Moulding International, 2008), Vol. 6 (4).Google Scholar
  19. 19.
    B. Smarslok and R. M. German, “Identification of design parameters in metal powder injection molding,” J. Adv. Mater. 37 (4), 3–11 (2005).Google Scholar
  20. 20.
    Autodesk Knowledge Network. Suspension Balance Model (Autodesk knowledge network, 2018). http://help.autodesk.com/view/MFIA/2017/ENU/?guid=GUID-BB1D 3AA2-5D2E-4C97-8174-33F9F11990AF. Cited May 5, 2018.Google Scholar
  21. 21.
    A. B. Semenov, A. A. Kutsbakh, D. B. Golodets, A. N. Muranov, and B. I. Semenov, “Numerical simulation of injection casting during the preparation of the production of shaped parts by injection casting of powder slurries,” in Proceedings of 2nd All-Russia Conference on Mechanics and Mathematical Simulation in Engineering (Izd. MGTU, Moscow, 2017), pp. 423–426.Google Scholar
  22. 22.
    A. N. Muranov, A. B. Semenov, P. S. Marakhovskii, E. Yu. Chutskova, and B. I. Semenov, “Thermophysical properties of a polymer–powder mixture for the production of 42CrMo4 steel parts by injection casting,” Perspekt. Mater. (2018) (in press).Google Scholar
  23. 23.
    D. O. Kazmer, Development and Designing of Casting Molds, Ed. by V. G. Duvidzon (TsOP Professiya, St. Petersburg, 2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. B. Semenov
    • 1
  • A. A. Kutsbakh
    • 1
    Email author
  • A. N. Muranov
    • 1
  • B. I. Semenov
    • 1
  1. 1.Laboratory of New Casting Methods and Technologies, Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations