Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 13, pp 1363–1368 | Cite as

Deformation Characteristics of the Aerobraking Shell Material

  • L. N. RabinskiiEmail author
  • A. L. Medvedskii
  • D. V. Nushtaev
  • D. V. Lyskov
NEW MATERIALS. TECHNOLOGY OF COMPOSITE MATERIALS

Abstract

The deformation characteristics of silica fabric with a thermal barrier coating, which is used for the production of the ballute-type aerobrake of a descent module, are estimated. A rubberized fabric strip is subjected to uniaxial tensile tests to failure. Various finite-element simulation approaches to the deformation of the fabric are considered.

Keywords:

silica fabric thermal barrier coating aerodynamic braking system state of stress finite-element method 

Notes

REFERENCES

  1. 1.
    O. M. Alifanov, A. A. Ivanov, A. V. Netelev, and V. S. Finchenko, “Application of aeroelastic devices with flexible thermal protection for breaking apparatus in the planet atmosphere,” Teplov. Protsessy Tekhn. 3 (5), 230–240 (2014).Google Scholar
  2. 2.
    L. V. Pankova, “Advanced technological possibilities in the space: synergetic effect,” in Proceedings of XXVIII Conference on Challenging Problems Development of the Russian Astronautics (Voina Mir, Moscow, 2004), pp. 173–174.Google Scholar
  3. 3.
    V. S. Finchenko, “Thermal protection of additional ballute-type aerobrake of apparatus moving in atmosphere,” Teplov. Protsessy Tekhn. 1 (8), 343–348 (2009).Google Scholar
  4. 4.
    B. A. Zemlyanskii, A. A. Ivankov, S. N. Ustinov, and V. S. Finchenko, “State of the art in the application of inflatable elements in aerospace engineering units, the use of ballute-type aerobrake in a descent module, and its thermal barrier coating,” Vestn. RFFI 57 (1), 37–63 (2008).Google Scholar
  5. 5.
    A. L. Medvedskii, S. I. Zhavoronok, D. V. Nushtaev, and D. V. Lyskov, “Dynamics of opening of a thin elastic spherical shell,” in Proceedings of XXII International Conference on Dynamic and Technological Problems of the Mechanics of Structures and Continuum (OOO TRP, Moscow, 2017).Google Scholar
  6. 6.
    A. L. Medvedskii, D. V. Nushtaev, and D. V. Lyskov, “Mathematical simulation of the opening of a transformed shell structure of a space descent module,” in Proceedings of Internal Forum on Engineering Systems (Moscow, 2017), pp. 17–18.Google Scholar
  7. 7.
    S. V. Lomov, “Prediction of the structure and mechanical properties of technical fabrics by mathematical simulation methods,” Doctoral Dissertation in Engineering (St. Petersburg, 1995).Google Scholar
  8. 8.
    P. Badel, E. Vidal-Salle, and P. Boisse, “Computational determination of in-plane shear mechanical behavior of textile composite reinforcements,” Comput. Mater. Sci. 40, 439–448.  https://doi.org/10.1016/j.commatsci.2007.01.022 CrossRefGoogle Scholar
  9. 9.
    Abaqus User Manual. Version 6.14 (Dassault Systemes Simulia Corp., 2014).Google Scholar
  10. 10.
    T. Belytschko, J. I. Lin, and C. S. Tkay, “Explicit algorithms for the nonlinear dynamics of shells,” Comput. Meth. Appl. Mech. Eng. 43, 251–276 (1984).CrossRefGoogle Scholar
  11. 11.
    A. C. Pipkin, “Continuously distributed wrinkles in fabrics,” Adv. RMA 95, 93–115 (1986).Google Scholar
  12. 12.
    H. Lobo and J. A. Hurtado, “Characterization and modeling of non-linear behavior of plastics,” in Proceedings of Abaqus User’s Conference (2006), pp. 86–95.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. N. Rabinskii
    • 1
    Email author
  • A. L. Medvedskii
    • 1
  • D. V. Nushtaev
    • 2
  • D. V. Lyskov
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.OOO TesisMoscowRussia

Personalised recommendations