Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 13, pp 1399–1406 | Cite as

Consumable Tool for Coating Deposition by Joint Deformation of the Base and Tool Materials

  • F. Yu. IsupovEmail author
  • O. V. Panchenko
  • A. A. Naumov
  • M. D. Alekseeva
  • L. A. Zhabrev
  • A. A. Popovich
COATING DEPOSITION
  • 4 Downloads

Abstract

A coating made of an Al–5Mg aluminum alloy is deposited onto a substrate of the same alloy due to the joint deformation of the base and tool materials via friction. A mathematical simulation is used to choose the geometry of the tool that ensures its operability and stability during coating deposition. One-layer and multilayer coatings and butt joints of 2-mm-thick sheets are formed. The joints have a fine-grained structure with the grain size that is smaller than the grain size in the substrate by a factor of 5–10. The microhardness distribution across the deposited layers is nonuniform: the hardness increases from the substrate to the upper layer.

Keywords:

friction surfacing consumable tool for friction stir welding Al–Mg aluminum alloys welding 

Notes

FUNDING

This work was performed in terms of the federal program Research and Development in the Priority Fields of the Russian Scientific and Technological Complex in 2014–2020 (project no. RFMEFI57517X0155).

REFERENCES

  1. 1.
    H. Klopstock and A. R. Neelands, “An improved method of joining or welding metals,” GB Patent 1339641 A.Google Scholar
  2. 2.
    H. K. Rafi, G. D. J. Ram, G. Phanikumar, and K. P. Rao, “Microstructural evolution during friction surfacing of tool steel H13,” Mater. Design 32 (1), 82–87 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Chandrasekaran, A. W. Batchelor, and S. Jana, “Study of the interfacial phenomenaduring friction surfacing of mild steel with tool steel and inconel,” J. Mater Sci. 33, 2709–2717 (1998).CrossRefGoogle Scholar
  4. 4.
    A. W. Batchelor, S. Jana, C. P. Koh, and C. S. Tan, “The effect of metal type and multi-layering on friction surfacing,” J. Mater Process Technol. 57, 172–181 (1996).CrossRefGoogle Scholar
  5. 5.
    B. D. Y. Sunil, C. Labesh Kumar, and S. Madhu, “Friction surfacing of stainless steel on low carbon steel for corrosion resistance application-an experimental approach,” Int. J. Mechan. Prod. Eng. Res. Dev. 7 (5), 123–144.Google Scholar
  6. 6.
    G. R. Madhusudhan, K. R. Srinivasa, and T. Mohandas, “Friction surfacing: novel technique for metalmatrix composite coating on aluminium–silicon alloy,” Surf. Eng. 25, 25–30 (2009).CrossRefGoogle Scholar
  7. 7.
    G. R. Madhusudhan, K. R. Srinivasa, and T. Mohandas, “Friction surfacing of titanium alloy with aluminum metal matrix composite,” Surf. Eng. (2009).  https://doi.org/10.1179/174329409X451128 CrossRefGoogle Scholar
  8. 8.
    S. Hanke and J. F. dos Santos, “Comparative study of severe plastic deformation at elevated temperatures of two aluminium alloys during friction surfacing,” J. Mater. Proc. Tech. 247, 257–267 (2017).CrossRefGoogle Scholar
  9. 9.
    H. Tokisue, K. Katoh, T. Asahina, and T. Ushiyama, “Structures and mechanical properties of multilayer friction surfaced aluminum alloys,” Report Res. Inst. Indust. Techn. 78, 1–13 (2005).Google Scholar
  10. 10.
    E. Doege, H. Mezer-Nolkemper, and I. Saeed, “Fließkurvenatlas Metallischer Werkstoffe mit Fließkurven für 73 Werkstoffe und Einer Grundlegenden Einführung (Hanser Verlag, München, 1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. Yu. Isupov
    • 1
    Email author
  • O. V. Panchenko
    • 1
  • A. A. Naumov
    • 1
  • M. D. Alekseeva
    • 1
  • L. A. Zhabrev
    • 1
  • A. A. Popovich
    • 1
  1. 1.New Industrial Technologies Center, Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations