Advertisement

Effect of Electric Fields on the Structure of an Aluminum Alloy during Magnetohydrodynamic Treatment

  • 2 Accesses

Abstract

The microstructure of a 1417M alloy after magnetohydrodynamic (MHD) treatment has been studied. An electric field induced in the aluminum alloy melt is shown to cause electric transfer and to homogenize its structure. During the formation of an ingot upon MHD treatment, intermetallic phase dendrites are preferably oriented along the lines of the induced electric field.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.

REFERENCES

  1. 1

    E. N. Kablov, B. V. Shchetanov, D. V. Grashchenkov, A. A. Shavnev, and A. N. Hyafkin, “Metallic composites based on Al, Si, C,” Aviats. Mater. Technol., No. S, 373–380 (2012).

  2. 2

    E. N. Kablov, O. V. Startsev, and I. M. Medvedev, “Review of the foreign experience of studies of corrosion and corrosion protection means,” Aviats. Mater. Technol., No. 2, 76–87 (2015). https://doi.org/10.18577/2071-9140-2015-0-2-76-87

  3. 3

    M. G. Kurs and S. A. Karimova, “Natural accelerated tests: the features of the technique and the methods of estimating corrosion characteristics of aluminum alloys,” Aviats. Mater. Technol., No. 1, 51–57 (2014). https://doi.org/10.18577/2071-9140-2014-0-1-51-57

  4. 4

    A. A. Kutsenko, “Effect of electric field on the structure formation and properties of perfect ingots,” Extended Abstract of Cand. Sci. (Eng.), Novokuznetsk, SGIU, 2014.

  5. 5

    P. Baraskara, R. Chouhana, A. Agrawalb, R. J. Choudharuc, P. K. Send, and P. Sena,” Magnetic field induced changes in linear and nonlinear optical properties of Ti incorporated Cr2O3 nanostructured thin film,” Physics Letters 382 (12), 860–864 (2018).

  6. 6

    G. N. Minenko and Yu. A. Smirnova,”Physical model of action of electric field on the process of alloy solidification,” Metallurg. Mashinostroeniya, No. 3, 48–49 (2009).

  7. 7

    E. N. Kablov, “Innovation solutions of FGUP VIAM GNTs RF for “Strategic directions of designing materials and technologies of their processing up to 2030,” Aviats. Mater. Technol., No. 1 (34), 3–33 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  8. 8

    W. A. P. Luck, D. Klein, and K. Rangsriwatananon, “Anticooperativity of the two water OH groups,” J. Mol. Struct., No. 416, 287–296 (1997).

  9. 9

    R. Zh. Akhiyarov, S. R. Rakhimov, Yu. G. Matveev, A. B. Laptev, D. E. Bugai, and O. R. Latypov, “Computational procedure of parameters of magnetohydrodynamic treatment for oil preparation in oil fields,” Neftegazovoe Delo, No. 5, 342–351 (2011).

  10. 10

    R. Zh. Akhiyarov, D. A. Gogolev, A. B. Laptev, and D. E. Bugai, “Increase in the efficiency of the deemulsion of water–oil media by their magnetohydrodynamic treatment,” Neftegazovoe Delo, No. 6, 27 (2006).

  11. 11

    A. B. Laptev, R. Zh. Akhiyarov, and S. E. Cherepashkin, “The method of processing a technological liquid flow and the device for its realization,” RF Patent 2287492, Bull. Izobret., No. 32 (Pt I) (2006).

  12. 12

    A. B. Laptev and G. P. Navalikhin “The method of processing corrosive medium,” RF Patent 2293707, Bull. Izobret. No. 3 (Pt III) (2006).

  13. 13

    V. I. Dubodelov, “Effect of alternating magnetic field on the diffusion in liquid aluminum,” Materialoved., No. 12, 27–29 (2003).

  14. 14

    A. B. Laptev, “Method and aggregates for magnetohydrodynamic treatment of water–oil media,” Extended Abstract of Doctorial (Eng.) Dissertation, Ufa, UGNTU, 2008.

  15. 15

    A. B. Laptev, M. V. Pervukhin, D. A. Movenko, A. N. Afanas’ev-Khodykin, V. N. Timofeev, and I. A. Galushka, “Effect of magnetohydrodynamic treatment of the 1417M alloy on the structure and the hydrogen content in it,” Vopr. Materialoved. 91 (3), 35–43 (2017).

  16. 16

    A. B. Laptev, M. V. Pervukhin, A. N. Afanas’ev-Khodykin, V. N. Timofeev, D. A. Movenko, and I. A. Galushka, “Electrotransfer of alloying element ions in aluminum alloys by the magnetohydrodynamic treatment of the melt,” Zh. Sib. Federal. Univer., Ser. Tekhn.Tekhnolog. 10 (8), 1032–1041 (2017).

Download references

Author information

Correspondence to A. B. Laptev.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ospennikova, O.G., Laptev, A.B., Pervukhin, M.V. et al. Effect of Electric Fields on the Structure of an Aluminum Alloy during Magnetohydrodynamic Treatment. Russ. Metall. 2019, 1264–1267 (2019) doi:10.1134/S0036029519120152

Download citation

Keywords:

  • aluminum alloys
  • magnetohydrodynamic treatment
  • microstructure