Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 11, pp 1184–1189 | Cite as

Nanoindentation Study of the Effect of Low-Temperature Ion Irradiation on the Hardness of a Ferritic–Martensitic EK-181 Steel

  • A. A. NikitinEmail author
  • S. V. Rogozhkin
  • T. V. Kulevoi
  • P. A. Fedin
  • N. A. Iskandarov
  • K. S. Kravchuk
  • E. V. Gladkikh
  • M. V. Leont’eva-Smirnova
  • E. M. Mozhanov
Article

Abstract

The hardness of a ferritic–martensitic steel EK-181 after ion irradiation to a maximum damaging dose of ~50 dpa in the temperature range 250–400°C is investigated. Nanoindentation is used to measure the mechanical properties. The hardnesses of the layer damaged by ions and that of the undamaged bulk material are found. At temperatures below 300°C, softening at a dose below 10 dpa and hardening at high doses of ~50 dpa are observed. Hardening is detected over the entire dose range at 400°C. The maximum hardness of the sample irradiated to ~50 dpa at 400°C is 1.7 GPa.

Keywords:

ferritic–martensitic steel ion irradiation radiation damage simulation hardness nanoindentation 

Notes

ACKNOWLEDGMENTS

Irradiation and atom-probe tomography analysis were performed at the Center of the Collaborative Access KAMIKS (http://kamiks.itep.ru), Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute; nanoindantation was carried out at the Technological Institute for Superhard and Novel Carbon Materials (http://www.tisncm.ru/suec/suec.html).

FUNDING

This work was supported by the Russian Scientific Foundation, project no. 17-19-01696.

REFERENCES

  1. 1.
    G. G. Bondarenko, Radiation Physics, Structure, and Strength of Solids (Laboratoriya Znanii, Moscow, 2016).Google Scholar
  2. 2.
    M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura, and H. Takeuchi, “Evaluation of hardening behaviour of ion irradiated reduced activation ferritic/martensitic steels by an ultra-micro-indentation technique,” J. Nucl. Mater. 307311, 260–265 (2002).CrossRefGoogle Scholar
  3. 3.
    H. Ogiwara, A. Kohyama, H. Tanigawa, and H. Sakasegawa, “Irradiation-induced hardening mechanism of ion irradiated JLF-1 to high fluencies,” Fus. Eng. Des. 81, 1091–1097 (2006).CrossRefGoogle Scholar
  4. 4.
    C. Petersen, A. Povstyanko, V. Prokhorov, A. Fedoseev, O. Makarov, and B. Dafferner, “Impact property degradation of ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1’,” J. Nucl. Mater. 367370, 544–549 (2007).CrossRefGoogle Scholar
  5. 5.
    A. G. Ioltukhovskiy, A. I. Blokhin, N. I. Budylkin, V. M. Chernov, M. V. Leont’eva-Smirnova, E. G. Mironova, E. A. Medvedeva, M. I. Solonin, S. I. Porollo, and L. P. Zavyalsky “Material science and manufacturing of heat-resistant reduced-activation ferritic–martensitic steels for fusion,” J. Nucl. Mater. 283287, 652–656 (2000).CrossRefGoogle Scholar
  6. 6.
    Xiang Liu, Yinbin Miao, Meimei Li, M. A. Kirk, and S. A. Maloy, “Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91,” J. Nucl. Mater. 490, 305–316 (2017).CrossRefGoogle Scholar
  7. 7.
    C. Topbasi, A. T. Motta, and M. A. Kirk, “In situ study of heavy ion induced radiation damage in HC616 (P92) alloy,” J. Nucl. Mater. 425, 48–53 (2012).CrossRefGoogle Scholar
  8. 8.
    E. A. Kuleshova, B. A. Gurovich, Z. V. Bukina, A. S. Frolov, D. A. Maltsev, E. V. Krikun, D. A. Zhurko, and G. M. Zhuchkov, “Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of 50–400°C,” J. Nucl. Mater. 490, 247–259 (2017).CrossRefGoogle Scholar
  9. 9.
    E. H. Lee, J. D. Hunn, G. R. Rao, R. L. Klueh, and L. K. Mansur, “Tripleion beam studies of radiation damage in 9Cr ± 2WVTa ferritic/martensitic steel for a high power spallation neutron source,” J. Nucl. Mater. 271272, 385–390 (1999).CrossRefGoogle Scholar
  10. 10.
    Y. Serruys, M.-O. Ruault, P. Trocellier, S. Miro, A. Barbu, L. Boulanger, O. Kaïtasov, S. Henry, O. Leseigneur, P. Trouslard, S. Pellegrino, and S. Vaubaillon, “JANNUS: experimental validation at the scale of atomic modeling,” Physique 9, 437–444 (2008).CrossRefGoogle Scholar
  11. 11.
    S. J. Zinkle and L. L. Snead, “Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations,” Scr. Mater. 143, 154–160 (2018).CrossRefGoogle Scholar
  12. 12.
    S. Rogozhkin, A. Bogachev, O. Korchuganova, A. Nikitin, N. Orlov, A. Aleev, A. Zaluzhnyi, M. Kozodaev, T. Kulevoy, B. Chalykh, R. Lindau, A. Möslang, P. Vladimirov, M. Klimenkov, M. Heilmaier, J. Wagner, and S. Seils, “Nanostructure evolution in ODS steels under ion irradiation,” Nucl. Mater. Energy. 9, 66–74 (2016).CrossRefGoogle Scholar
  13. 13.
    S. V. Rogozhkin, A. A. Nikitin, A. A. Khomich, N. A. Iskandarov, V. V. Khoroshilov, A. A. Bogachev, A. A. Luk’yanchuk, O. A. Raznitsyn, A. S. Shutov, P. A. Fedin, R. P. Kuibida, T. V. Kulevoy, A. L. Vasil’ev, M. Yu. Presnyakov, K. S. Kravchuk, and A. S. Useinov, “Simulation experiments on heavy ion beams for modeling radiation damage of structural materials of nuclear and thermonuclear power plants,” Yad. Fiz. Inzhiniring 3, 139–152 (2019).Google Scholar
  14. 14.
    W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).CrossRefGoogle Scholar
  15. 15.
    E. G. Herbert, W. C. Oliver, and G. M. Pharr, “Nanoindentation and the dynamic characterization of viscoelastic solids,” Phys. D: Appl. Phys. 41, 074021 (2008).CrossRefGoogle Scholar
  16. 16.
    S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, et al., “Effect of irradiation by heavy ions on the nanostructure of perspective materials for nuclear power plants,” Phys. Met. Metallogr. 13, 200–211 (2012).CrossRefGoogle Scholar
  17. 17.
    T. V. Kulevoy, B. B. Chalyhk, P. A. Fedin, A. L. Sitnikov, A. V. Kozlov, R. P. Kuibeda, S. L. Andrianov, N. N. Orlov, K. S. Kravchuk, S. V. Rogozhkin, A. S. Useinov, E. M. Oks, A. A. Bogachev, A. A. Nikitin, N. A. Iskandarov, and A. A. Golubev, “Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources,” Rev. Sci. Instr. 87, 02C102 (2016).CrossRefGoogle Scholar
  18. 18.
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—the stopping and range of ions in matter,” Nucl. Instr. Meth. Phys. Res. Sec. B: Beam Inter. Mater. Atoms 268, 1818–1823 (2010).CrossRefGoogle Scholar
  19. 19.
    R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, “On the use of SRIM for computing radiation damage exposure,” Nucl. Instr. Met. Phys. Res. Sec. B: Beam Inter. Mater. Atoms 310, 75–80 (2013).CrossRefGoogle Scholar
  20. 20.
    K. Durst, B. Backes, O. Franke, and M. Göken, “Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations,” Acta Mater. 54, 2547–2555 (2006).CrossRefGoogle Scholar
  21. 21.
    G. M. Pharr, E. G. Herbert, and Y. Gao, “The indentation size effect: a critical examination of experimental observations and mechanistic interpretations,” Ann. Rev. Mater. Res. 40, 271–292 (2010).CrossRefGoogle Scholar
  22. 22.
    W. D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Solids 46, 411–425 (1998).CrossRefGoogle Scholar
  23. 23.
    A. Kareera, A. Prasitthi payong, D. Krumwiede, D. M. Collins, P. Hosemann, and S. G. Roberts, “An analytical method to extract irradiation hardening from nanoindentation hardness-depth curves,” Nucl. Mater. 498, 274–281 (2018).CrossRefGoogle Scholar
  24. 24.
    Y. Huang, F. Zhang, K. C. Hwang, W. D. Nix, G. M. Pharr, and G. Feng, “A model of size effects in nano-indentation,” J. Mech. Phys. Solids 54, 1668–1686 (2006).CrossRefGoogle Scholar
  25. 25.
    S. V. Rogozhkin, V. S. Ageev, A. A. Aleev, A. G. Zaluzhnyi, M. V. Leont’eva-Smirnova, and A. A. Nikitin, “Tomographic atom-probe analysis of temperature-resistant 12%-chromium ferritic–martensitic steel EK‑181,” Phys. Met. Metallogr. 108, 579–585 (2009).CrossRefGoogle Scholar
  26. 26.
    S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, N. A. Iskandarov, A. A. Nikitin, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Nanoscale study of ferritic–martensitic steel Rusfer EK-181 after various thermal treatments,” Inorg. Mater.: Appl. Res. No. 3, 129–134 (2012).CrossRefGoogle Scholar
  27. 27.
    S. V. Rogozhkin, N. A. Iskandarov, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibida, T. V. Kulevoi, V. V. Chalykh, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Investigation of the influence of irradiation with Fe ions on the nanostructure of ferritic martensitic steel EK-181,” Inorg. Mater.: Appl. Res., No. 4, 426–430 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Nikitin
    • 1
    • 2
    Email author
  • S. V. Rogozhkin
    • 1
    • 2
  • T. V. Kulevoi
    • 1
  • P. A. Fedin
    • 1
  • N. A. Iskandarov
    • 1
  • K. S. Kravchuk
    • 3
  • E. V. Gladkikh
    • 3
  • M. V. Leont’eva-Smirnova
    • 4
  • E. M. Mozhanov
    • 4
  1. 1.Alikhanov Institute for Theoretical and Experimental Physics, National Research Centre Kurchatov InstituteMoscowRussia
  2. 2.National Research Nuclear UniversityMoscowRussia
  3. 3.Technological Institute for Superhard and Novel Carbon MaterialsTroitsk, MoscowRussia
  4. 4.Bochvar High-Technology Scientific Research Institute for Inorganic MaterialsMoscowRussia

Personalised recommendations