Russian Metallurgy (Metally)

, Volume 2019, Issue 11, pp 1195–1204 | Cite as

Effect of the Deformation during Pressure Welding of a Wrought EP975 Nickel Alloy and a Single-Crystal Intermetallic VKNA-25 Alloy on the Structure and Properties of the Welded Joints

  • A. A. DrozdovEmail author
  • K. B. Povarova
  • V. A. Valitov
  • O. A. Bazyleva
  • E. V. Galieva
  • M. A. Bulakhtina
  • E. G. Arginbaeva


The influence of the strain (24, 30, 40%) during the pressure welding (PW) of an EP975 alloy in a superplasticity state and subsequent high-temperature heat treatment of welded joints on their structure and room-temperature mechanical properties is studied to find the conditions of PW of a single-crystal [001] Ni3Al-based VKNA-25 blade alloy and an EP975 disk alloy in order to fabricate a blisk. The tensile strength of the welded samples is found to be maximal after PW of the EP975 alloy at a strain of ~40%, and the strength reached at lower strains is also sufficiently high, 0.7–0.8 of the strength of the VKNA-25 blade alloy. To optimize the technology of solid-phase joining, it is reasonable to decrease the PW strain to 20% and to increase the welding temperature to 1175°C.


solid-phase joining superplasticity pressure welding strain wrought nickel superalloy cast intermetallic alloy single crystal structure diffusion properties 



This work was supported by the Russian Science Foundation, project no. 18-19-00685.


  1. 1.
    A. V. Logunov and Yu. N. Shmotin, Modern Nickel Superalloys for Gas Turbine Disks (Nauka Tekhnologiya, Moscow, 2013).Google Scholar
  2. 2.
    L. A. Magerramova, “Application of bimetal blisks made by HIP from granulated and cast nickel superalloys to increase the reliability and life of gas turbines,” Vestn. UGATU 15 (4(44)), 33–38 (2011).Google Scholar
  3. 3.
    K. B. Povarova et al., “Ultralight high-temperature nanostructured Ni3Al-based alloys intended for aviation engine building and power mechanical engineering,” Vopr. Materialoved., No. 2 (54), 85–93 (2008).Google Scholar
  4. 4.
    N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Alloys Based on Titanium and Nickel, Ed. by E. N. Kablov (VIAM, Moscow, 2018).Google Scholar
  5. 5.
    R. E. Shalin et al., Single Crystals of Nickel Superalloys (Mashinostroenie, Moscow, 1997).Google Scholar
  6. 6.
    Cast Blades of Gas Turbine Engines: Alloys, Technologies, Coatings, Ed. by E. N. Kablov (Nauka, Moscow, 2006).Google Scholar
  7. 7.
    B. S. Lomberg et al., “Nickel superalloys for gas turbine engine parts,” in in 80 Years Aviation Materials and Technologies: Jubilee Scientific and Technical Collection, Ed. by E. N. Kablov (VIAM, Moscow, 2012), pp. 52–57.Google Scholar
  8. 8.
    V. M. Bychkov et al., “Weldability of a high-temperature EP742 nickel alloy by linear friction welding,” Vestn. UGATU 16 (7(52)), 112–116 (2012).Google Scholar
  9. 9.
    V. S. Ryl’nikov, A. N. Afanas’ev-Khodykin, and I. A. Galushka, “Technology of soldering of blisk structures made of different alloys,” Transactions of VIAM, No. 10 (2013).Google Scholar
  10. 10.
    O. G. Ospennikova, V. S. Ryl’nikov, V. I. Lukin, et al., “Method of diffusion soldering the GTE rotor of a blisk made of nickel superalloys,” RF Patent 2414350, Byull. Izobret., No. 8 (2011).Google Scholar
  11. 11.
    A. V. Lyushinskii, “Joining of high-temperature alloy parts by diffusion welding. Part 1,” Svar. Proizvod., No. 7, 17–22 (2016).Google Scholar
  12. 12.
    R. Ya. Lutfullin, “Superplasticity and solid-phase joining of nanostructured materials. I. Effect of the grain size on the solid-phase weldability of superplastic alloys,” Pis’ma Mater. 1, 59–64 (2011).Google Scholar
  13. 13.
    R. Ya. Lutfullin, “Superplasticity and solid-phase joining of nanostructured materials. II. Physical model of the formation of a solid-phase joint in titanium alloy under low-temperature superplasticity,” Pis’ma Mater. 1, 88–91 (2011).Google Scholar
  14. 14.
    A. V. Lyushinskii, “Joining of high-temperature alloy parts by diffusion welding. Part 2. Diffusion welding of titanium-based high-temperature alloys,” Svar. Proizvod., No. 8, 38–48 (2016).Google Scholar
  15. 15.
    K. B. Povarova, V. A. Valitov, S. V. Ovsepyan, A. A. Drozdov, O. A. Bazyleva, and E. V. Valitova, “Study of the properties and the choice of alloys for bladed disks (blisks) and a method for their joining,” Russ. Metall. (Metally), No. 9, 733–741 (2014).CrossRefGoogle Scholar
  16. 16.
    A. A. Drozdov, V. A. Valitov, K. B. Povarova, O. A. Bazyleva, E. V. Galieva, and S. V. Ovsepyan, “Formation of the solid-phase joints of a disk nickel superalloy with an ultrafine-grained structure with an Ni3Al-based single-crystal blade alloy,” Pis’ma Mater. 5 (2), 142–146 (2015).Google Scholar
  17. 17.
    V. A. Valitov, R. R. Mulyukov, O. G. Ospennikova, et al., “Method of producing a bimetallic product,” RF Patent 2608118, Byull. Izobret., No. 2 (2017).Google Scholar
  18. 18.
    K. B. Povarova, V. A. Valitov, A. A. Drozdov, O. A. Bazyleva, E. V. Galieva, and E. G. Arginbaeva, “Formation of gradient structures in the zone of joining a deformable nickel alloy and a single-crystal intermetallic alloy during thermodiffusion pressure welding and subsequent heat treatment,” Russ. Metall. (Metally), No. 1, 42–50 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Drozdov
    • 1
    • 2
    • 3
    Email author
  • K. B. Povarova
    • 2
  • V. A. Valitov
    • 1
  • O. A. Bazyleva
    • 4
  • E. V. Galieva
    • 1
  • M. A. Bulakhtina
    • 1
    • 2
  • E. G. Arginbaeva
    • 1
    • 4
  1. 1.Institute for Metals Superplasticity Problems, Russian Academy of SciencesUfaRussia
  2. 2.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  3. 3.Bardin Central Research Institute for Ferrous MetallurgyMoscowRussia
  4. 4.All-Russia Research Institute of Aviation MaterialsMoscowRussia

Personalised recommendations