Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 1112–1124 | Cite as

Creep of Tubes under External Pressure

  • E. E. Vorob’evEmail author
  • M. M. Peregud
  • T. N. Khokhunova
  • O. Yu. Mileshkina
  • S. A. Bekrenev
  • V. A. Markelov
  • M. A. Shtremel’


29 tubes made of an E110 alloy for VVER and PWR reactors are subjected to creep tests under external pressure (temperature of 350 and 380°C, circumferential stress of 70–130 MPa, holding time up to 4250 h). Creep is found to be accelerated after deformation up to 0.9% and ovality up to b/a = 0.86 and is ended in the collapse of a tube. The equations of tube equilibrium and creep under pressure are generalized for tubes of any ovality (ellipses of any eccentricity). The solutions to these equations predict the presence of a general curve in the contour length–eccentricity coordinates and give tube instability conditions under pressure.


creep in tubes E110 alloy external pressure 



  1. 1.
    V. F. Dudinov, Yu. N. Knizhnikov, and P. A. Platonov, “Stability of the fuel cladding from initial ovality to collapse during creep under external pressure,” Vopr. Atomn. Nauki Tekhn., Ser. Atomn. Materialoved. 27 (2), 54–59 (1988).Google Scholar
  2. 2.
    R. Adamson, F. Garzarolli, and C. Patterson, In-Reactor Creep of Zirconium Alloys (ANTI, Sweden, 2009).Google Scholar
  3. 3.
    A. M. Lokoshchenko, Creep and Long-Term Strength of Metals (Fizmatlit, Moscow, 2016).Google Scholar
  4. 4.
    V. V. Kiselev and D. V. Dolgikh, Nonlinear–Elastic Patterns of Dents on the Surfaces of Loaded Plates and Shells (Fizmatlit, Moscow, 2013).Google Scholar
  5. 5.
    A. S. Vol’mir, Stability of Deformed Systems, 2nd ed. (Nauka, Moscow, 1967).Google Scholar
  6. 6.
    V. I. Van’ko, Essays about the Stability of Structural Members, 3d ed. (MVTU, Moscow, 2015).Google Scholar
  7. 7.
    E. Yanke, F. Emde, and F. Lesh, Special Functions (Formulas, Plots, Tables), 6th ed. (Nauka, Moscow, 1964).Google Scholar
  8. 8.
    H. J. Frost and M. F. Ashby, Deformation-Mechanisms Maps (Pergamon, New York, 1982).Google Scholar
  9. 9.
    S. P. Timoshchenko, History of the Material Resistance Science with Brief Information from the History of the Theory of Elasticity and the Theory of Constructions, 2nd ed. (Komkniga, Moscow, 2006).Google Scholar
  10. 10.
    I. Prigogine and D. Kondepudi, Modern Thermodynamics. From Heat Engines to Dissipative Structures (Wiley, New York, 1998).Google Scholar
  11. 11.
    G. P. Bystrai, Thermodynamics of Irreversible Processes in Open Systems (RKhD, Moscow, 2011).Google Scholar
  12. 12.
    G. Tsigler, Extreme Principles of the Thermodynamics of Irreversible Processes and Continuum Mechanics (Mir, Moscow, 1966).Google Scholar
  13. 13.
    Physical Metallurgy. Vol. 6. Structural Materials of Nuclear Power Engineering, Ed. by B. A. Kalin (NIYau MIFI, Moscow, 2012).Google Scholar
  14. 14.
    R. V. Sausvell, Introduction to the Theory of Elasticity for Engineers and Physicists (IL, Moscow, 1948).Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Nauka, Moscow, 1987).Google Scholar
  16. 16.
    I. N. Izmalkov, L. P. Loshmanov, and A. V. Kostyukhina, “Mechanical properties of an E110 alloy at temperatures up to 1273 K,” Izv. Vyssh. Uchebn. Zaved., Yadern. Energetika, No. 2, 64–70 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. E. Vorob’ev
    • 1
    • 2
    Email author
  • M. M. Peregud
    • 1
  • T. N. Khokhunova
    • 1
  • O. Yu. Mileshkina
    • 1
  • S. A. Bekrenev
    • 1
  • V. A. Markelov
    • 1
  • M. A. Shtremel’
    • 2
  1. 1.AO VNIINMMoscowRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations