Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 1057–1062 | Cite as

Change in the Mechanical Properties of Commercial-Purity Copper during Alternating Elastoplastic Deformation

  • V. M. Matyunin
  • A. Yu. MarchenkovEmail author
  • A. E. Shelest
  • V. S. Yusupov
  • M. M. Perkas
STRUCTURE AND PROPERTIES OF THE DEFORMED STATE

Abstract

The mechanical properties of commercial-purity copper strips subjected to alternating elastoplastic deformation in a mangle have been studied. One pass is shown to be sufficient to increase the yield strength of a treated strip by four times with only a slight change in the ultimate strength and a relatively insignificant decrease in the ductility. The study of the correlation of the hardness with the strength characteristics shows that Vickers microhardness HV0.1 of the treated strip surface increases to a lesser degree than the yield strength does. In this case, the yield-strength Brinell hardness that corresponds to a residual strain of 0.2% increases by almost four times. The strain-hardening coefficients that enter in the Meyer equation for indentation and the Ludwik–Hollomon equation for tension have been determined. Their correlation is observed for the copper strips before and after treatment.

Keywords:

mangle copper hardness mechanical properties strain-hardening coefficient 

Notes

FUNDING

This work was supported by state task no. 007-00129-18-00.

REFERENCES

  1. 1.
    X. L. Wu, M. X. Yang, F. P. Yuan, L. Chen, and Y. T. Zhu, “Combining gradient structure and TRIP effect to produce austenitic stainless steel with high strength and ductility,” Acta Mater. 112, 337–346 (2016).CrossRefGoogle Scholar
  2. 2.
    V. P. Sirotinkin, V. F. Terent’ev, and A. K. Slizov, “Study of surface layers of cold-rolled thin-sheet trip-steel by X-ray diffraction,” Deform. Razrushenie Mater., No. 5, 21–26 (2016).Google Scholar
  3. 3.
    M. Ya. Browman, “On elastoplastic beam bending during motion,” Izv. Akad. Nauk SSSR, Ser. Mech. Tverd. Tel, No. 3, 155–160 (1982).Google Scholar
  4. 4.
    E. A. Maksimov and R. L. Shatalov, “Modeling of a stress–strain state at flattening of thick sheets on a mangle,” Stal’, No. 1, 31–34 (2018).Google Scholar
  5. 5.
    V. N. Shinkin, “Calculation of technological parameters of flattening of thin steel strip on a Fagor Arrasate 15-roll mangle,” Molodoi Uchenyi, No. 10, 361–366 (2015).Google Scholar
  6. 6.
    I. V. Nedorezov, Simulation of Processes of Flattening of Rolled Metals on Roll Machines (Akvapress, Yekaterinburg, 2003).Google Scholar
  7. 7.
    A. E. Shelest, V. S. Yusupov, M. M. Perkas, E. N. Sheftyel’, and K. E. Akopyan, “Development of the technique of determining the geometric and deformation parameters of flattening of metallic sheets on mangles,” Proizvod. Prokata, No. 7, 3–8 (2016).Google Scholar
  8. 8.
    A. E. Shelest, V. S. Yusupov, M. M. Perkas, E. N. Sheftyel’, V. V. Prosvirin, and K. E. Akopyan, “Formation of the mechanical properties of copper strips during alternating elastoplastic bending,” Rus. Met. (Metally), No. 5, 500–507 (2018).CrossRefGoogle Scholar
  9. 9.
    V. M. Matyunin, A. Yu. Marchenkov, E. V. Terent’ev, and A. N. Demidov, “Substantiation of the ratio of the sample thickness to the indentation depth in hardness measurements,” Rus. Met. (Metally), No. 13, 47–50 (2016).Google Scholar
  10. 10.
    S. A. Fedosov and L. Peshek, Determination of the Mechanical Properties of Materials by Indentation. Modern Foreign Techniques (MGU, Moscow, 2004).Google Scholar
  11. 11.
    M. P. Markovets, Determination of the Mechanical Properties of Metals by Their Hardness (Mashinostroenie, Moscow, 1979).Google Scholar
  12. 12.
    V. M. Matyunin, Indentation in the Diagnostics of the Mexchanical Properties of Materials (MEI, Moscow, 2015).Google Scholar
  13. 13.
    Yu. V. Mil’man, S. N. Dub, and A. A. Golubenko, “Scale dependence of the hardness and thecharacteristics of the ductility determined during indentation,” Deform. Razrushenie Mater., No. 8, 3–10 (2008).Google Scholar
  14. 14.
    S. I. Bulychev, “Yield strength hardness and the hysteresis,” Deform. Razrushenie Mater., No. 1, 41–45 (2011).Google Scholar
  15. 15.
    E. Meyer, “Untersuchungen über Härterprüfung and Härte Brinell Methoden,” Zeit. Vereins Deutscher Ingenieure, 52, 645–654 (1908).Google Scholar
  16. 16.
    V. F. Terent’ev and S. A. Korableva, Fatigue of Metals (Nauka, Moscow, 2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. M. Matyunin
    • 1
  • A. Yu. Marchenkov
    • 1
    Email author
  • A. E. Shelest
    • 2
  • V. S. Yusupov
    • 2
  • M. M. Perkas
    • 2
  1. 1.National Research University Moscow Power Engineering InstituteMoscowRussia
  2. 2.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations