Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 986–993 | Cite as

Effect of Thermohydrogen Treatment on the Manufacturing and Mechanical Properties of a Heat-Resistant VTI-4 Intermetallic Alloy

  • S. V. Skvortsova
  • O. Z. PozhogaEmail author
  • A. V. Ovchinnikov
  • A. A. Orlov


The effect of additional alloying of a Ti2AlNb-based VTI-4 alloy with hydrogen on the structure, the phase composition, and the manufacturing and mechanical properties of the alloy is studied. Hydrogenating annealing is found to favor the formation of a single-phase O structure at room temperature and to increase the deformability of the alloy. The mechanical properties of the alloy subjected to thermohydrogen treatment under different conditions are shown to be comparable with those reached by traditional annealing.


Ti2AlNb titanium intermetallics ortho phase O phase thermohydrogen treatment VTI-4 alloy manufacturability mechanical properties 



The studies were performed using the equipment available in the Collective Usage Center for Aviation and Space Materials and Technologies at the Moscow Aviation Institute.


  1. 1.
    V. V. Antipov, “Development strategy of titanium, magnesium, beryllium, and aluminum alloys”, Aviats. Mater. Tehkn., No. S, 157–167 (2012).Google Scholar
  2. 2.
    E. N. Kablov, “Innovative developments of the FSUE VIAM SSC RF for the realization of strategic directions in developing materials and their processing technologies up to 2030,” Aviats. Mater. Tehkn., No. S, 7–17 (2012).Google Scholar
  3. 3.
    I. S. Pol’kin, O. N. Grebenyuk, and V. S. Salenkov, “Titanium-based intermetallics”, Tekhn. Legkikh Splavov, No. 2, 5–15 (2010).Google Scholar
  4. 4.
    J. Kumpfert, “Intermetallic alloys based on orthorhombic titanium aluminide,” Adv. Eng. Mater. 3 (11), 851–864 (2001).CrossRefGoogle Scholar
  5. 5.
    V. Imayev, T. Oleneva, R. Imaev, H.-J. Christ, and H.‑J. Fecht, “Microstructure and mechanical properties of low and heavy alloyed γ-TiAl + α2-Ti3Al based alloys subjected to different treatments,” Intermetallics 26, 91–97 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. T. Wu, C. T. Yang, and C. H. Koo, “The effect of Nb content on the superplasticity of Ti–25Al–xNb alloy,” Mater. Chem. Phys. 73 (2–3), 212–219 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Tian, Q. Wang, H. Yu, H. Sun, and Q. Li, “Microstructure and creep behaviors of a high Nb–TiAl intermetallic compound based alloy,” Mater. Sci. Eng. A 614, 338–346 (2014).CrossRefGoogle Scholar
  8. 8.
    B. A. Kolachev, A. A. Il’in, V. K. Nosov, and A. M. Mamonov, “Advances in hydrogen technology of titanium alloys,” Tekhn. Legkikh Splavov, No. 3, 10–26 (2007).Google Scholar
  9. 9.
    A. A. Il’in, B. A. Kolachev, V. K. Nosov, and A. M. Mamonov, Hydrogen Technology of Titanium Alloys (MISiS, Moscow, 2002).Google Scholar
  10. 10.
    M. Yu. Kollerov, A. V. Ovchinnikov, M. B. Afonina, V. S. Mamaev, and A. A. Levochkon, “Effect of hydrogen on the plastic deformation mechanism of industrial (α + β) titanium alloys,” Titan, No. 3, 22–27 (2012).Google Scholar
  11. 11.
    M. Sh. Gadel’shin, L. I. Anisimova, and E. S. Boitsova, “Hydrogen plasticization of titanium alloys,” Mezhdun. Nauchn. Zh. Al’tern. Energ. Ekolog. 17 (9), 26–29 (2004).Google Scholar
  12. 12.
    O. N. Senkov and F. H. Froes, “Thermohydrogen processing of titanium alloys”, Int. J. Hyd. Energy, No. 24, 565–576 (1999).Google Scholar
  13. 13.
    O. N. Senkov, F. H. Froes, and J. I. Qazi, “Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing,” Int. Mater. Rev. 49 (3–4), 227–245 (2004).Google Scholar
  14. 14.
    N. A. Nochovnaya, S. V. Skvortsova, D. S. Anishchuk, E. B. Alekseev, P. V. Panin, and O. Z. Umarova, “Elaboration of technology for experimental heat-resistant alloy based on Ti2AlNb intermetallic,” Titan, No. 4, 24–29 (2013).Google Scholar
  15. 15.
    E. B. Alekseev, N. A. Nochovnaya, S. V. Skvortsova, P. V. Panin, and O. Z. Umarova, “Determination of technology parameters of deformation of experimental heat-resistant alloy based on Ti2AlNb intermetallic,” Titan, No. 2, 34–39 (2014).Google Scholar
  16. 16.
    A. A. Shiryaev and N. A. Nochovnaya, “Study of the structure and chemical composition of ingots of experimental high-alloyed titanium alloy,” Trudy VIAM, No. 9 (2015). CrossRefGoogle Scholar
  17. 17.
    Z. Yang, H. Kou, F. Zhang, X. Xue, J. Li, and L. Zhou, “The effect of VAR process parameters on beta flecks formation in Ti–10V–2Fe–3Al,” in Proceedings of 12th World Conference on Titanium Ti-2011, Beijing (Science Press, Beijing, 2012), Vol. 1, pp. 601–604.Google Scholar
  18. 18.
    A. A. Orlov, A. E. Ivanov, and E. A. Kasymova, “Effect of heating temperature before hardening for changing the phase composition and structure of the VTI-4 alloy additionally alloyed with hydrogen,” in Gagarin Readings-2018, XLIV MMNK (MAI, Moscow, 2018), Vol. 3, pp. 347–348. Google Scholar
  19. 19.
    P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, Physical Foundations of Plastic Deformation (Metallurgiya, Moscow, 1982).Google Scholar
  20. 20.
    V. A. Livanov, A. A. Bukhanova, and B. A. Kolachev, Hydrogen in Titanium (Metallurgiya, Moscow, 1962).Google Scholar
  21. 21.
    B. A. Kolachev, Hydrogen Brittleness of Metals (Metallurgiya, Moscow, 1985).Google Scholar
  22. 22.
    O. P. Solonina and S. G. Glazunov, Titanium Alloys. Heat-Resistant Titanium Alloys (Metallurgiya, Moscow, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Skvortsova
    • 1
  • O. Z. Pozhoga
    • 1
    Email author
  • A. V. Ovchinnikov
    • 2
  • A. A. Orlov
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Moscow Aviation Institute (National Research University), Stupino BranchStupinoRussia

Personalised recommendations