Advertisement

Structure and High-Temperature Mechanical Properties of High-Carbon Niobium-Based Alloys

  • 1 Accesses

Abstract—The structure and the mechanical properties of Nb80C20 and Nb40Mo40C20 alloys have been studied at temperatures 20–1500°C. The mechanical properties of the Nb80C20 alloy from room temperature to 1300°C are shown to be slightly lower than those of complex Nb–Si alloys. The short-time and 100-h strengths of the Nb40Mo40C20 alloy at 1500°C are higher than those of Nb–Si alloys. The Nb40Mo40C20 alloys have a low fracture toughness.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    M. I. Karpov, “Niobium-base refractory alloys with silicide and carbide hardening: current status and prospects,” Metal Sci. Heat Treat. 60 (1, 2), 7–12 (2018).

  2. 2

    M. I. Karpov, V. I. Vnukov, V. P. Korzhov, T. S. Stroganova, I. S. Zheltyakova, D. V. Prokhorov, I. B. Gnesin, V. M. Kiiko, Yu. P. Kolobov, E. V. Golosov, and A. N. Nekrasov, “Structure and mechanical properties of the high-temperature eutectic Nb–Si alloy obtained by the directional solidification methods,” Deform. Razrushenie Mater., No. 12, 2–8 (2012).

  3. 3

    I. L. Svetlov, M. I. Karpov, A. V. Neiman, and T. S. Stroganova, “Temperature dependence of the ultimate strength in-situ composites of a multi-component Nb–Si–X (X = Ti, Hf, W, Cr, Al, Mo) system,” Deform. Razrushenie Mater., No. 10, 17–22 (2017).

  4. 4

    M. I. Karpov, V. P. Korzhov, T. S. Stroganova, I. S. Zheltyakova, D. V. Prokhorov, V. I. Vnukov, V. M.Kiiko, A. N. Tolstun, Yu. P. Kolobov, and E. V. Golosov, “Structure and properties of Nb–Si alloys fabricated by powder metallurgy methods,” Deform. Razrushenie Mater., No. 12, 5–8 (2011).

  5. 5

    M. V. Pridantsev, V. K. Grigorovich, E. N. Sheftel’, “Aging of oxygen-alloyed niobium alloys,” Metalloved. Term. Obrab. Met., No. 4, 47–50 (1969).

  6. 6

    M. V. Zakharov and A. M. Zakharov, Refractory Alloys (Metallurgiya, Moscow, 1972).

  7. 7

    M. G. Grigorovich and E. N. Sheftel’, “Physicochemical basics of designing high-temperature niobium alloys,” Materialoved. Term. Obrab. Met., No. 7, 23–29 (1982).

  8. 8

    M. G. Grigorovich and E. N. Sheftel’, Precipitation Hardening of High-Melting Metals (Nauka, Moscow, 1983).

  9. 9

    O. A. Bannykh and E. N. Sheftel’, “Dispersion hardening by carbides in niobium-base alloys,” in Proceedings of The Metallurgical Society Fall Meeting (The Metallurg. Soc., Warrendale, 1991), pp. 73–82.

  10. 10

    O. A. Bannykh and E. N. Sheftel’, “Niobium-base alloys,” J. Refract. Met. Hard Mater. 12 (5), 303–314 (1993–1994).

  11. 11

    E. N. Sheftel’ and O. A. Bannykh, “Physicochemical and structural approaches to designing niobium-based structural alloys,” Rus. Met. (Metally), No. 5, 523–534 (2001).

  12. 12

    A. D. Stan and D. B. Harold, “Banding in niobium–niobium carbide (Nb2C) composites grown by zone melting and freezing,” Metallurg. Trans. 5 (11), 2309–2316 (1974).

  13. 13

    A. D. Stan and D. B. Harold, “Banding in niobium–niobium carbide (Nb2C) composites grown by zone melting and freezing,” Metallurg. Trans. 5 (12), 2608–2611 (1974).

  14. 14

    E. N. Sheftel’, O. A. Bannykh, G. Sh. Usmanova, and E. V. Markova, “Effect of crystallization rate on the structure of alloys in the Nb–Zr–C system,” Met. Sci. Heat Treat. 31 (3), 271–277 (1989).

  15. 15

    Y. Tan, C. L. Ma, A. Kasama, R. Tanaka, Y. Mishima, S. Hanada, and J.-M. Yang, “Effect of alloy composition on microstructure and high temperature properties of Nb–Zr–C ternary alloys,” Mater. Sci. Eng. A 341 (1, 2), 282–288 (2003).

  16. 16

    R. Ding, I. P. Jones, and H. Jiao, “Microstructures and mechanical properties of Nb-Ti-C alloys,” Mater. Sci. Eng. A 458 (1, 2), 126–135 (2007)

  17. 17

    H. Jiao, I. P. Jones, and M. Aindow, “Microstructures and mechanical properties of Nb–Ti–C alloys,” Mater. Sci. Eng. A 485 (1, 2), 359–366 (2008).

  18. 18

    J. L. Pouchou and F. Pichoir, “A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples,” Recherche Aerospatiale 3, 13–38 (1984).

  19. 19

    S. T. Mileiko, “Oxide–fibre/Ni-based matrix composites. III. A creep model and analysis of experimental data,” Composites Sci. Technol., No. 62, 195–204 (2002).

  20. 20

    S. T. Mileiko and V. M. Kiiko, “High-temperature creep of fibre composites with a metallic matrix at variable stresses,” Mekh. Compozit. Mater. 40 (4), 523–534 (2004).

  21. 21

    D. Broek, Elementary Engineering Fracture Mechanics (Springer, Netherlands, 1978).

Download references

Author information

Correspondence to D. V. Prokhorov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karpov, M.I., Prokhorov, D.V., Vnukov, V.I. et al. Structure and High-Temperature Mechanical Properties of High-Carbon Niobium-Based Alloys. Russ. Metall. 2019, 1018–1023 (2019). https://doi.org/10.1134/S0036029519100124

Download citation

  • Keywords: Nb–C alloys
  • high-temperature strength
  • short-time mechanical properties
  • creep