Russian Metallurgy (Metally)

, Volume 2019, Issue 8, pp 816–819 | Cite as

Effect of the off-Diagonal dd Electron Overlappings on the Effective Pair Interaction in the Equiatomic Cu–Ag Melt

  • N. E. DubininEmail author


The effect of d electron overlapping between two neighboring atoms, which is off-diagonal in magnetic quantum number, on the effective pair interaction in the equiatomic Cu–Ag melt near the melting temperature is studied within the framework of the Wills–Harrison model. An increase in the fraction of off-diagonal overlapping is shown to increase the first minimum depth and to shift its coordinate to smaller interatomic distances for all three partial pair potentials.


transition-metal melts Wills–Harrison model Bretonnet–Silbert model pseudopotential dd electron overlapping effective pair interaction 



This work was performed in the framework of the state assignment to the Institute of Metallurgy, Ural Branch, Russian Academy of Sciences.


  1. 1.
    L. D. Son, R. E. Ryltsev, V. E. Sidorov, and D. Sordelet, “Structural transformations in liquid metallic glassformers,” Mat. Sci. Eng. A 582, 449–451 (2007).Google Scholar
  2. 2.
    A. B. Shubin and K. Yu. Shunyaev, “Thermodynamic properties of liquid Sc-Al alloys: model calculations and experimental data,” J. Phys.: Conf. Ser. 98, 032017 (2008).Google Scholar
  3. 3.
    A. B. Shubin and K. Yu. Shunyaev, Rus. Met. (Metally), No. 8, 672–677 (2010). CrossRefGoogle Scholar
  4. 4.
    A. B. Shubin and K. Yu. Shunyaev, Rus. Met. (Metally), No. 2, 109–113 (2011). CrossRefGoogle Scholar
  5. 5.
    Y. Qi, L. Wang, and T. Fang, “Demixing behavior in binary Cu–Co melt,” Phys. Chem. Liq. 51, 687–694 (2013).CrossRefGoogle Scholar
  6. 6.
    N. E. Dubinin, N. A. Vatolin, and V. V. Filippov, “Thermodynamic perturbation theory in studies of metal melts,” Rus. Chem. Rev. 83, 987–1002 (2014).CrossRefGoogle Scholar
  7. 7.
    A. M. Povodator and V. S. Tsepelev, “Generalized characterization of metallic liquid alloys’ properties,” in Proceedings of 2nd International Conference on Simulation and Modeling: Methodologies, Technologies, and Applications (Destech. Publicat. Inc., Paris, 2015), pp. 464–467.Google Scholar
  8. 8.
    R. E. Ryltsev, V. A. Klumov, N. M. Chtchelkatchev, and K. Yu. Shunyaev, J. Chem. Phys. 145, 034506 (2016). CrossRefGoogle Scholar
  9. 9.
    Y. Liu, J. Wang, J. Qin, and G. Schumacher, Phys. Chem. Liq. 54, 98–109 (2016). CrossRefGoogle Scholar
  10. 10.
    L. D. Son, V. E. Sidorov, and N. Katkov, “Statistics and thermodynamics of Fe–Cu alloys at high temperatures,” EPJ Web of Conferences 151, UNSP 05003 (2017).CrossRefGoogle Scholar
  11. 11.
    B. A. Klumov, R. E. Ryltsev, and N. M. Chtchelkatchev, J. Chem. Phys. 149, 134501 (2018). CrossRefGoogle Scholar
  12. 12.
    R. E. Ryltsev, B. A. Klumov, N. M. Chtchelkatchev, and K. N. Shunyaev, J. Chem. Phys. 149, 165502 (2018). CrossRefGoogle Scholar
  13. 13.
    J. M. Wills and W. A. Harrison, “Interionic interactions in transition metals,” Phys. Rev. B 28, 4363–4373 (1983).CrossRefGoogle Scholar
  14. 14.
    W. A. Harrison and S. Froyen, “Universal linear-combination-of-atomic-orbitals parameters for d-state solids,” Phys. Rev. B 21, 3214–3221 (1980).CrossRefGoogle Scholar
  15. 15.
    J. M. Ziman, “A theory of the electric properties of liquid metals. I: The monovalent metals,” Phil. Mag. 6, 1013–1034 (1961).CrossRefGoogle Scholar
  16. 16.
    N. E. Dubinin, “Account of non-diagonal coupling between d electrons at describing the transition-metal pair potentials,” J. Phys.: Conf. Series 338, 012004 (2012).Google Scholar
  17. 17.
    N. E. Dubinin, Rus. Met. (Metally), No. 2, 157–160 (2013). CrossRefGoogle Scholar
  18. 18.
    N. E. Dubinin and N. A. Vatolin, Doklady Physics 61, 527–530 (2016). CrossRefGoogle Scholar
  19. 19.
    P. Vashishta and K. Singwi, “Electron correlation at metallic densities,” Phys. Rev. B 6, 875–887 (1972).CrossRefGoogle Scholar
  20. 20.
    N. E. Dubinin, L. D. Son, and N. A. Vatolin, “The Wills–Harrison approach to the thermodynamics of binary liquid transition-metal alloys,” J. Phys.: Condens. Matter 20, 114111 (2008).Google Scholar
  21. 21.
    J. L. Bretonnet and M. Silbert, “Interionic interactions in transition metals. Application to vanadium,” Phys. Chem. Liq. 24, 169–176 (1992).CrossRefGoogle Scholar
  22. 22.
    N. E. Dubinin, L. D. Son, and N. A. Vatolin, “Thermodynamic properties of liquid binary transition-metal alloys in the Bretonnet–Silbert model,” Defect Diffus. Forum 263, 105–110 (2007).Google Scholar
  23. 23.
    P. Fima and N. Sobczak, “Thermophysical properties of Ag and Ag–Cu liquid alloys at 1098 K to 1573 K,” Int. J. Thermophys. 31, 1165–1174 (2010).CrossRefGoogle Scholar
  24. 24.
    J. L. Bretonnet and A. Derouiche, “Vibrational thermodynamic calculations for liquid transition metals,” Phys. Rev. B 43, 8924–8929 (1991).CrossRefGoogle Scholar
  25. 25.
    R. C. Gosh, M. R. Amin, A. Z. Ziauddin Ahmed, I. M. Syed, and G. M. Bhuiyan, Appl. Surf. Science 258, 5527–5532 (2012). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Metallurgy, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University named after the first President of Russia B.N. YeltsinYekaterinburgRussia

Personalised recommendations