Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 5, pp 536–541 | Cite as

Magnetic Characteristics of Sintered (Pr,Dy)–(Fe,Co,Cu)–B Materials with Various Copper Contents as Functions of the Annealing Temperature

  • R. A. Valeev
  • I. I. RezchikovaEmail author
  • E. A. Davydova
  • R. B. Morgunov
  • V. P. Piskorskii
Article

Abstract

The effect of copper alloying on the coercive force and the residual induction of sintered materials (Pr0.53Dy0.47)13(Fe0.64Co0.36)resCuxB6 (x = 0–3 at %) annealed at various temperatures is considered. The dependences of coercive force HcI and residual induction Br on the copper content are found to be nonmonotonic. This fact is explained by that alloying with copper leads to a change in the phase composition, which is accompanied by an increase in the coercive force and the residual magnetization of the alloy, while a change in the chemical composition and the thickness of intergranular interlayers upon copper alloying leads to a decrease in the values of HcI and Br as the copper content increases.

Keywords:

rare-earth magnets phase composition ferromagnetism 

Notes

FUNDING

This work was supported by complex scientific direction 11.1 “Thermostable Hard Magnetic Materials and Mathematical Models of Calculation of Their Temperature Characteristics for Next-Generation Navigation Devices” (“Strategic Directions of the Development of Materials and the Technologies of Their Processing up to 2030”).

REFERENCES

  1. 1.
    E. N. Kablov, V. P. Piskorskii, G. S. Burkhanov, R. A. Valeev, N. S. Moiseeva, S. V. Stepanova, A. F. Petrakov, I. S. Tereshina, and M. V. Repina, “Thermostable ring Nd(Pr)–Dy–Fe–Co–B-based magnets with a radial texture,” Fiz. Khim. Obrab. Mater., No. 3, 43–47 (2011).Google Scholar
  2. 2.
    J. F. Herbst, “R2Fe14B materials: intrinsic properties and technological aspects,” Rev. Modern Phys. 63 (4), 819–898 (1991).Google Scholar
  3. 3.
    J. F. Herbst and W. B. Yelon, “Preferential site occupation and magnetic structure of Nd2(CoxFe1 – x)14B systems,” J. Appl. Phys. 60 (12), 4224–4229 (1986).CrossRefGoogle Scholar
  4. 4.
    E. N. Kablov, A. F. Petrakov, V. P. Piskorskii, R. A. Valeev, and E. B. Chabina, “Effect of praseodymium on the magnetic properties and the phase composition of a material of the Nd–Pr–Dy–Fe–Co–B system,” Metalloved. Term. Obrab. Met., No. 6, 12–16 (2005).Google Scholar
  5. 5.
    O. M. Ragg and I. R. Harris, “A study of the effects of theaddition of various amounts of Cu to sintered Nd–Fe–B magnets,” J. Alloys Compd, No. 256, 252–257 (1997).CrossRefGoogle Scholar
  6. 6.
    E. Burzo, “Permanent magnets based on R–Fe–B and R–Fe–C alloys,” Rep. Prog. Phys. 61, 1134–1137 (1998).CrossRefGoogle Scholar
  7. 7.
    X. B. Liu and Z. Altounian, “The role of Cu in sintered Nd–Fe–B magnets,” IEEE Trans. Magnet. 48 (11), 3144–3146 (2012).CrossRefGoogle Scholar
  8. 8.
    H. Sepehri-Amin, T. Ohkubo, M. Zaktonik, D. Prosperi, P. Afiuny, C. O. Tudor, and K. Hono, “Microstructure and magnetic properties of grain boundary modified recycled Nd–Fe–B sintered magnets,” J. Alloys Compd. 694, 175–184 (2017).CrossRefGoogle Scholar
  9. 9.
    O. A. Arinicheva, A. S. Lileev, A. A. Lukin, M. Raizner, and F. Kubel’ “Low-temperature magnetic properrties and the phase composition of (Pr,Dy)–(Fe,Co, Al,Cu)–B magnets,” Metalloved. Term. Obrab. Met., No. 11, 22– 27 (2014).Google Scholar
  10. 10.
    G. S. Burkhanov, E. M. Semenova, D. Yu. Karpenkov, A. A. Lukin, N. B. Kol’chugina, J. Cwik, K. Rogacki, M. R. Kurza, and K. Skotnicova, “Application of the duplex sintering process for improving the energy parameters of thermal stable Pr–Dy–Fe–Co–B–Cu–Al permanent magnets,” Perspekt. Mater., No. 11, 39–45 (2016).Google Scholar
  11. 11.
    E. N. Kablov, V. P. Piskorskii, R. A. Valeev, O. G. Ospennikova, I. I. Rezchikova, N. V. Volkov, and K. A. Shaikhutdinov, “Effect of copper on the temperature dependence of the magnetization of sintered (Pr,Dy)–(Fe,Co)–B materials,” Rus. Met. (Metally), No. 9, 718–720 (2014).Google Scholar
  12. 12.
    J. F. Herbst and J. J. Croat, “Neodymium–iron–boron permanent magnets,” J. Magn. Magn. Mater. 100, 57–78 (1991).CrossRefGoogle Scholar
  13. 13.
    E. N. Kablov, O. G. Ospennikova, D. E. Kablov, I. I. Rezchikova, A. D. Talantsev, E. I. Kunitsyna, R. B. Morgunov, and V. P. Piskorskii, “Effect of copper concentration on atomic site occupation by Fe ions and magnetic properties of (Pr-Dy)–(Fe-Co)–B alloys,” Phys. Sol. State 58 (6), 1135–1142 (2016).CrossRefGoogle Scholar
  14. 14.
    E. A. Davydova, “Phase composition and magnetic properties of hard magnetic materials of the Pr–Dy(Gd)–Fe–Co–B system.” Extended Abstract of Cand. Sci. (Eng.) Dissertation, VIAM, Moscow, 2012.Google Scholar
  15. 15.
    Z. Wang, J. Ju, J. Wang, W. Yin, R. Chen, M. Li, Ch. Jin, X. Tang, D. Lee, and A. Yan, “Magnetic properties improvement of die-upset Nd–Fe–B magnets by Dy–Cu press injection and subsequent heat treatment,” Sci. Reports, 6:38335.Google Scholar
  16. 16.
    K.-D. Durst and H. Kronmuller, “The coercive force of sintered and melt-spun NbFeB magnets,” J. Magn. Magn. Mater. 68, 63–75 (1987).CrossRefGoogle Scholar
  17. 17.
    D. Givord, M. Rossignol, and D. Taylor, “Coercivity mechanisms in hard magnetic materials,” J. Phys. IV Colloque, No. 02(C3), C3-95–C3-104 (1992).Google Scholar
  18. 18.
    S. Nishio, S. Sugimoto, R. Goto, M. Matsuura, and N. Tezuka, “Effect of Cu addition on the phase equilibria in Nd–Fe–B sintered magnets,” Mater. Trans. 50 (4), 723–726 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. A. Valeev
    • 1
  • I. I. Rezchikova
    • 1
    Email author
  • E. A. Davydova
    • 1
  • R. B. Morgunov
    • 2
  • V. P. Piskorskii
    • 1
  1. 1.All-Russia Institute of Aviation MaterialsMoscowRussia
  2. 2.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations