Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 5, pp 542–547 | Cite as

Effect of Overload on the Near-Threshold Fatigue Crack Growth Rate in a 2024-T3 Aluminum Alloy: II. Fatigue Crack Growth Simulation for Calculating the Fatigue Life under Alternating Loading

  • A. N. SavkinEmail author
  • R. Sunder
  • A. V. Andronik
  • A. A. Sedov
Article
  • 5 Downloads

Abstract

The results of overloading and underloading tests of aluminum specimens in near-threshold crack growth rate range are considered. A combined model is proposed to take into account crack closure and the influence of the local stresses at the crack mouth. The model is based on the Neuber and Ramberg–Osgood equations and can be used to estimate the fatigue life of crack growth in the near-threshold range. This model is grounded from a physical standpoint.

Keywords:

fatigue test overloading loading block near-threshold crack growth rate fatigue crack growth rate curve simulation 

Notes

REFERENCES

  1. 1.
    V. V. Panasyuk, Mechanics of Quasi-Brittle Fracture of Materials (Naukova Dumka, Kiev, 1991).Google Scholar
  2. 2.
    A. Kiciak, G. Glinka, and D. J. Burns, “Calculation of stress intensity factors and crack opening displacements for cracks subjected to complex stress fields,” J. Pres. Ves. Technol. 125, 260–266 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Maierhofer, R. Pippan, H.-P. Gänser “Modified NASGRO equation for physically short cracks,” Int. J. Fatigue 59, 200–207 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Willenborg, R. H. Engle, and H. A. Wood, A Crack Growth Retardation Model Based on Effective Stress Concepts. Report AFFDL-TM-71-1 FBR (WPAFB, 1971).Google Scholar
  5. 5.
    O. E. Wheeler, “Spectrum loading and crack growth,” J. Basic Eng. 94, 181–186 (1972).CrossRefGoogle Scholar
  6. 6.
    R. Sunder, “Unraveling the science of variable amplitude fatigue,” J. ASTM Int. 9 (1), 32 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Sunder, “Fatigue as process of brittle micro-fracture,” Fatig. Fract. Eng. Mater. Struct. 28 (3), 289–300 (2005).CrossRefGoogle Scholar
  8. 8.
    V. I. Dobrovol’skii and S. V. Dobrovol’skii, “Determination of the fracture mechanics parameters during long-term loading,” Zavod. Lab., No. 6 (72), 47–55 (2006).Google Scholar
  9. 9.
    T. M. Johnson, “Fatigue life prediction of automotive-type load histories,” in Fatigue under Complex Loading: Analysis and Experiments (1977), Vol. 6, pp. 85–93.Google Scholar
  10. 10.
    D. Broek, Foundations of Fracture Mechanics (Vysshaya Shkola, Moscow, 1980).Google Scholar
  11. 11.
    A. N. Savkin, A. V. Andronik, and R. Koraddi, “Technique for determining the coefficients of a crack growth rate equation for cyclic loading,” Zavod. Lab. 82 (1), 57–63 (2016).Google Scholar
  12. 12.
    A. N. Savkin, A. V. Andronik, and R. Koraddi, “Approximation algorithms of crack growth rate curve based on crack size variations,” J. Test. Evaluat. 44 (1), 310–319 (2016).Google Scholar
  13. 13.
    A. N. Savkin, A. V. Andronik, and K. A. Badikov, Program for Choosing the Coefficients of Fatigue Crack Growth Curve Equations Using Experimental Data on the Crack Growth Rate and the Stress Intensity Factor Range (VolgGTU, Volgograd, 2015).Google Scholar
  14. 14.
    A. N. Savkin and A. V. Andronik, Program for Calculating the Threshold Stress Intensity Factor Range Using Experimental Data on the Increase in the Stress Intensity Factor Range in Constant-Amplitude Cycles on Loading with Rare Small Overloads (VolgGTU, Volgograd, 2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. N. Savkin
    • 1
    Email author
  • R. Sunder
    • 1
  • A. V. Andronik
    • 1
  • A. A. Sedov
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations