Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 5, pp 487–494 | Cite as

Metallurgical Beneficiation of Iron Laterite Ores with the Formation of a Metallic Nickel–Cobalt Concentrate

  • G. B. SadykhovEmail author
  • A. G. Anisonyan
  • T. V. Olyunina
  • D. Yu. Kop’ev
Article
  • 1 Downloads

Abstract

A new process is developed for metallurgical beneficiation of iron laterite nickel-containing (limonite) ores with the formation of a metallic nickel–cobalt concentrate. This process includes reducing roasting of the ores with sulfur-containing additions in the temperature range 1100–1200°C, the fragmentation of the roasting product, and the magnetic separation of metallic and slag phases. The coarsening of metallic particles in roasting is shown to occur with the participation of a low-melting-point phase (iron oxysulfide Fe(O,S)). In this case, nickel and cobalt concentrate in a metallic phase in the form of an alloy with iron (ferronickel). At the optimum charge composition and reducing roasting parameters, ferronickel particles coalesce and grow to 40–100 μm, which creates favorable conditions for the subsequent beneficiation of the roasting product (cinder) by magnetic separation. After wet magnetic separation of a fragmented cinder, the extraction of nickel and cobalt into a magnetic fraction is 92 and 84%, respectively. When a poor limonite ore (1.03% Ni, 0.05% Co) is processed according to the developed technology, the synthesized metallic concentrate contains up to 8.3% Ni and 0.37% Co.

Keywords:

iron laterite ores reducing roasting sulfur-containing additions coarsening of metallic particles ferronickel iron oxysulfide wüstite magnetic separation metallic nickel–cobalt concentrate 

Notes

REFERENCES

  1. 1.
    I. D. Reznik, G. P. Ermakov, and Ya. M. Shneerson, Nickel (Nauka Tekhnol., Moscow, 2001), Vol. 2.Google Scholar
  2. 2.
    A. D. Dalvi, W. G. Bacon, and R. C. Osborne, “The past and the future of nickel laterites,” in PDAC 2004 International Convention (Trade Show & Investors Exchange, Ontario, 2004).Google Scholar
  3. 3.
    Nickel Recovery from Reject Laterite by Graeme Goodall (McGill University, Montreal, 2007).Google Scholar
  4. 4.
    M. Ellias, “Nickel laterite deposits—geological overview, resources and exploration,” in Giant Ore Deposits, Characteristics, Genesis and Exploration, Ed. by D. Cooke and J. Pontgratz (University of Tasmania, Hobart, 2002), Vol. 4, pp. 205–220.Google Scholar
  5. 5.
    M. Ellias, “Nickel laterites in SE Asia,” in Geology, Technology and Mines (Bali, 2013).Google Scholar
  6. 6.
    I. D. Reznik, G. P. Ermakov, and Ya. M. Shneerson, Nickel (Nauka Tekhnol., Moscow, 2000), Vol. 1.Google Scholar
  7. 7.
    J. Kyle, “Nickel laterite processing technologies—where to next?” in Proceedings of ALTA 2010 Nickel/Cobalt/Copper Conference (Perth, 2010). http://researchrepository.murdoch.edu.au/4340.Google Scholar
  8. 8.
    M. H. Caron, “Fundamental and practical factors in ammonia leaching of nickel and cobalt ores,” J. Metals 188, 67–90 (1950).Google Scholar
  9. 9.
    I. D. Reznik, T. A. Kharlakova, A. D. Maiorov, L. I. Pimenov, et al., “Segregation roasting of oxidized nickel ores,” Tsvetn. Met., No. 1, 20–25 (1997).Google Scholar
  10. 10.
    Yu. A. Karasev, A. Ya. Kipnis, N. V. Artem’eva, et al., “Metallurgy of nickel and cobalt,” Nauch. Trudy Gipronikel’, No. 58, 5–211 (1973).Google Scholar
  11. 11.
    L. L. Chermak, M. I. Zolkina, and A. F. Pronin, “Segregation roasting of oxidized nickel ores,” Tsvetn. Met., No. 6, 20–23 (1973).Google Scholar
  12. 12.
    Z. P. Titova, V. A. Kovtun, R. A. Yakovleva, and A. D. Maiorov, “Segregation recovery of nickel and cobalt from oxidized nickel ores,” Tsvetn. Met., No. 4, 33–37 (1988).Google Scholar
  13. 13.
    A. S. Ericson, J. Svensson, and K. Ishii “Development of the MINPRO-PAMCO nickel segregation process,” J. Metals 36 (9), 42–46 (1984).Google Scholar
  14. 14.
    A. D. Maiorov, I. D. Reznik, T. A. Kharlakova, V. A. Kravtsov, and Yu. N. Lozinskii, “Segregation roasting of oxidized nickel ores with flotation in a closed scheme,” Tsvetn. Met., No. 9, 22–25 (1998).Google Scholar
  15. 15.
    I. D. Reznik, A. V. Tarasov, V. D. Shustitskii, A. D. Maiorov, and F. N. Gurvich, “Economic efficiency of segregation roasting of oxidized nickel ores with flotation of cinder,” Tsvetn. Met., No. 2, 26–31 (2000).Google Scholar
  16. 16.
    G. B. Sadykhov, K. G. Anisonyan, K. B. Goncharov, Yu. V. Zablotskaya, M. Sh. Khasanov, and T. V. Olyunina, “Combined approaches to the enhancement of the efficiency of using oxidized nickel ores,” in Proceedings of the V International Conference–School on Chemical Technology KhT16 (Izd. VolgGTU, Volgograd, 2016).Google Scholar
  17. 17.
    G. B. Sadykhov, “Fundamental problems of the hydrometallurgical recovery of Ni and Co from ferriferous oxidized nickel ores,” in Proceedings of the XX Mendeleev Congress on General and Applied Chemistry (Izd. UrO RAN, Yekaterinburg, 2016).Google Scholar
  18. 18.
    G. B. Sadykhov, A. I. Kiselev, and Yu. A. Lainer, “Method of processing of laterite nickel ores with direct ferronickel formation,” WO Patent 2014/133421, 2015.Google Scholar
  19. 19.
    G. B. Sadykhov, A. I. Kiselev, Yu. A. Lainer, Yu. A. Tsymbulov, and V. Yu. Lozitskii, “Low-temperature method of processing of laterite nickel ores with direct ferronickel formation,” WO Patent 2016/171579, 2016.Google Scholar
  20. 20.
    G. B. Sadykhov, “Method of processing of laterite nickel ores with direct ferronickel formation,” WO Patent 2018/101855, 2018.Google Scholar
  21. 21.
    A. M. Bigeev and V. A. Bigeev, Metallurgy of Steel (Izd. MGTU, Magnitogorsk, 2000).Google Scholar
  22. 22.
    S. A. Fedichkin, “Depletion of the converter slag of nickel production by reduction–sulfidizing aluminum-containing complexes,” Extended Abstract of Cand. Sci. (Eng.) Dissertation, Yekaterinburg, 2005.Google Scholar
  23. 23.
    S. O. Ryzhkova, “Types of ores and the formation of the Buruktal nickel deposit (South Urals),” Extended Abstract of Cand. Sci. (Geol-Min.) Dissertation, St. Petersburg, 2010.Google Scholar
  24. 24.
    Presentation of the Indonesia Project (2013). http:// cvmr.ca/news/?p=412.Google Scholar
  25. 25.
    S. McKinnon, “Nickel west poised to double up Kwinana lithium ion supply plans,” The West Australian (October 17, 2017). https://thewest.com.au/business/mining/nickel-west-poised-to-double-up-kwinana- lithium-ion-supply-plans-ng-b88631701z.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. B. Sadykhov
    • 1
    Email author
  • A. G. Anisonyan
    • 1
  • T. V. Olyunina
    • 1
  • D. Yu. Kop’ev
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations