Russian Metallurgy (Metally)

, Volume 2019, Issue 5, pp 507–510 | Cite as

Electrochemical Oxidation of a Heavy Tungsten-Containing VNZh-Type Alloy and Its Components in Ammonia–Alkali Electrolytes

  • O. G. KuznetsovaEmail author
  • A. M. Levin
  • M. A. Sevast’yanov
  • O. I. Tsybin
  • A. O. Bol’shikh


Linear voltammetry in the potentiodynamic mode is used to study the electrochemical behavior of a heavy tungsten-containing VNZh alloy (in wt %: 90 W, 7 Ni, 3 Fe) and its components in ammonia–alkali electrolytes. The anodic oxidation of individual tungsten and nickel is found to be activated when NH4OH is introduced into the composition of an alkaline electrolyte. Galvanostatic electrolysis is used to perform electrochemical processing of a VNZh-type alloy with a current efficiency of about 100% for tungsten and a specific energy consumption of ~1.5 kW h/kg.


tungsten nickel heavy alloys tungsten-containing alloys anodic dissolution linear voltammetry 



  1. 1.
    G. V. Chernyak and K. B. Povarova, Tungsten in Ammunition, Ed. by I. N. Torgun (FGUP TsNIIKhM, Moscow, 2014).Google Scholar
  2. 2.
    V. Kovalenko and V. Kotoc, “Selective anodic treatment of W(WC)-based superalloy scrap,” Eastern-Europ. J. Enter. Technol. 85 (1/5), 53–58 (2017).Google Scholar
  3. 3.
    V. V. Reznichenko, A. M. Butenko, and O. Ya. Loboiko, “Iron recovery from tungsten-containing tool alloys in the presence of ozone,” Tr. Odesskogo Politekhn. Univ., No. 2, 205–209 (2009).Google Scholar
  4. 4.
    G. A. Baranov, M. N. Gavrish, and D. D. Sanikovich, “Production of nanopowders in processing of the wastes of tungsten-containing alloys and investigation of their granulometric composition,” Vestn. Nats. Tekhn. Univ. Ukrainy Kiev. Politekhn. Inst., Ser. Mashinostr., No. 63, 42–46 (2011).Google Scholar
  5. 5.
    A. A. Palant, A. M. Levin, and L. A. Palant, “Method of electrochemical processing of the metallic wastes of tungsten–copper alloys,” RF Patent 2479652, 2013.Google Scholar
  6. 6.
    S. Hairunisha, G. K. Sendil, J. Prabhakar Rethinaraj, G. N. Srinivasan, P. Adaikkalam, and S. Kulandaisamy, “Studies on the preparation of pure ammonium tungstate from pure ammonium para tungstate from tungsten alloy scrap,” Hydrometallurgy 85, 67–71 (2007).CrossRefGoogle Scholar
  7. 7.
    V. V. Parshutin, “Corrosion and electrochemical behavior of pseudoalloys based on tungsten and its components,” Elektron. Obrab. Mater., No. 6, 27–45 (2008).Google Scholar
  8. 8.
    M. D. Sakhnenko, M. V. Ved’, I. Yu. Ermolenko, and M. S. Pankrat’eva, “Electrolyte for fast selective separation of tungsten alloys,” UA Patent 50653, 2010.Google Scholar
  9. 9.
    R. I. Kraidenko, Yu. V. Perederin, D. S. Filatov, A. B. Manucharyants, et al., “Technology of tungsten production: state of the art of technology,” Polzunovskii Vestn. 2 (4), 135–139 (2015).Google Scholar
  10. 10.
    Handbook on Electrochemistry, Ed. by A. M. Sukhotin (Khimiya, Leningrad, 1981).Google Scholar
  11. 11.
    M. N. Dyatlov, V. Ya. Temkina, and K. I. Popov, Metal Complexones and Complexonates (Khimiya, Moscow, 1998).Google Scholar
  12. 12.
    A. M. Levin, O. G. Kuznetsova, and M. A. Sevost’yanov, “Electrical conductivity of NaOH–NH4OH aqueous solutions at 20°C,” in Proceedings of Conference on Scientific and Innovation World (AETERNA, Ufa, 2017), Vol. 5, pp. 31–34.Google Scholar
  13. 13.
    S. F. Belov, M. S. Igumnov, and A. M. Levin, “Anodic dissolution of tungsten in sodium hydroxide in the presence of \({\text{NH}}_{4}^{ + },\) \({\text{SO}}_{4}^{{2 - }},\) and \({\text{CO}}_{3}^{{2 - }}\) ions,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 1, 124–127 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. G. Kuznetsova
    • 1
    Email author
  • A. M. Levin
    • 1
  • M. A. Sevast’yanov
    • 1
  • O. I. Tsybin
    • 1
  • A. O. Bol’shikh
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations